
Causal Inference on Networks under Continuous
Treatment Interference

Laura Forastiere ∗1, Davide Del Prete2, and Valerio Leone Sciabolazza3

1Yale University, New Haven (CT), USA
2University of Naples Parthenope, Naples, Italy

3Sapienza University of Rome, Rome, Italy

Abstract

This paper investigates the case of interference, when a unit’s treatment also affects other
units’ outcome. When interference is at work, policy evaluation mostly relies on the use of
randomized experiments under cluster interference and binary treatment. Instead, we con-
sider a non-experimental setting under continuous treatment and network interference. In
particular, we define spillover effects by specifying the exposure to network treatment as
a weighted average of the treatment received by units connected through physical, social
or economic interactions. Building on Forastiere et al. (2021), we provide a generalized
propensity score-based estimator to estimate both direct and spillover effects of a continuous
treatment. Our estimator also allows to consider asymmetric network connections charac-
terized by heterogeneous intensities. To showcase this methodology, we investigate whether
and how spillover effects shape the optimal level of policy interventions in agricultural mar-
kets. Our results show that, in this context, neglecting interference may underestimate the
degree of policy effectiveness.
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1 Introduction

Policy interventions may spill over across units and generate indirect effects. These effects, which

are pervasive in many economic and social contexts, stem from interference which occurs when

an agent’s treatment indirectly affects other agents’ outcomes (Cox, 1958). Understanding the

mechanism of interference is therefore crucial for the optimal design of an intervention, because

it allows policy-makers to leverage or reduce spillover effects and improve the overall policy

effectiveness (Moffitt, 2001).1

In this paper, we consider settings where direct and spillover effects of treatment exposure

are to be assessed using observational data in the presence of network interference. Forastiere

et al. (2021) propose a method that allows producing unbiased estimates of the treatment impact

by correcting for the bias resulting from both treatment selection and interference. We adapt this

method to quantify both the direct and spillover effects of a treatment when this is defined on a

continuous scale, and a weighted directed network is used to define spillover exposure to other

agents’ treatments.

The study of network interference in observational data is still at its earlier stages. In most

cases, existing impact evaluation methodologies (e.g., the propensity score matching (PSM),

Rosenbaum & Rubin 1983; Dehejia et al. 2002) rely on the assumption that an agent’s treatment

does not spill over on to other agents,2 and largely neglect the existence of interference. Most lit-

erature in economics and statistics dedicated to the estimation of causal effects under interference

relies on broad-based policy experimentation. This represents the ideal framework to develop a

rigorous evaluation of an intervention (Athey & Imbens, 2017), and a large array of cleverly de-

signed experiments and estimators have been developed to deal with the issue of interference (see

Aronow & Samii, 2017; Baird et al., 2018; Leung, 2019, for recent reviews and contributions).3

1This is the case, for example, when contrasting criminal involvement (Glaeser et al., 1996), improving immi-
grants’ access to labor market (Beaman, 2012), providing financial education (Bursztyn et al., 2014; Cai et al., 2015),
designing health programs (Miguel et al., 2004), providing managerial incentive systems (Bandiera et al., 2009) or
retirement plans (Duflo and Saez, 2003), encouraging schooling attendance (Lalive et al., 2009), and responding to
trade restrictions (Giordani et al., 2016).

2This is also called Individualistic Treatment Response (ITR) assumption (Manski, 2013), and combined with
the unique treatment assumption is referred to as the Stable Unit Treatment Value Assumption (SUTVA) (Rubin,
1980).

3One of the most used experimental design is the two-stage randomization, where clusters are randomly assigned
to a treatment dosage and then individuals within clusters are randomly assigned to the treatment with probability
depending on the cluster treatment dosage. Under this design, estimation of direct and spillover effects relies on
the partial interference assumption of no spillovers across clusters (Hudgens & Halloran, 2008; Liu & Hudgens,
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Yet, experimental settings are rarely available and more than often the only viable option to as-

sess a policy effectiveness is through the analysis of observational data. For this reason, research

has recently provided new methodologies to deal with network interference in observational data

(Van der Laan, 2014; Sofrygin & van der Laan, 2017; Ogburn et al., 2022; Forastiere et al., 2021,

2022; Zigler et al., 2023). We contribute to this literature by adapting the method developed by

Forastiere et al. (2021) to settings with a continuous treatment and where interference occurs on

a weighted network and is characterized by heterogeneous intensities. 4

We build our work on the methodology proposed by Forastiere et al. (2021), whose approach

consists in conceiving each agent as subject to two treatments: the individual treatment, and the

exposure to the treatment received by network connections, with the latter defined as a summary

of the treatment vector among the unit’s network neighbors. Expanding this approach, we con-

sider that agents are exposed to a treatment defined on a continuous scale, and they are embedded

in a weighted directed network, where treatment’s spillover effects flow along different directions

and the degree of exposure to the treatment mediated by network connections is a function of the

connection intensity. Therefore, while the methodology pursued here relies heavily on theoretical

results from Forastiere et al. (2021), the nature of our setting, which consider a continuous treat-

ment and heterogeneous network exposure, entails non-trivial differences in formulation of the

causal estimands, the definition of the network treatment, and the development of the estimator.

Given the continuous nature of both the individual and network treatment, the potential outcomes

are here seen as a bivariate dose-response. This implies the definition of new causal estimands,

the treatment and spillover effect functions, as the derivative of univariate dose-response func-

tions obtained by marginalizing the bivariate function over the observed marginal distribution

of one dimension. Causal estimation of these effects is then obtained by balancing individual

and network characteristics across agents under different levels of the individual and network

treatments. This is achieved by imputing each missing potential outcome of the dose-response

function controlling for the so-called joint propensity score (JPS), the joint probability density

function evaluated at the level of the individual and network treatments of interest. The adjust-

2013; Tchetgen Tchetgen & VanderWeele, 2012; Baird et al., 2018). However, in many settings individuals are not
organized in separate clusters and treatments spillover through network connections.

4It is worth noting that Zigler et al. (2023) expanded this methodology in a different direction, considering
interference of a binary treatment characterized by heterogeneous intensities in a bipartite weighted and directed
network.
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ment for the joint propensity score relies on a model-based approach, which extends to a bivariate

continuous case the method already proposed by Imbens (2000) and Hirano & Imbens (2004) for

the generalized propensity score for a continuous treatment without interference. In particular,

we replace the subclassification-based adjustment for the neighborhood propensity score, that is

the probability density function of the spillover exposure to the treatment of the network neigh-

bors given covariates, proposed by Forastiere et al. (2021) with a model-based adjustment, and

we model spillover effects using a weighted directed network in order to track different directions

and intensity of network exposure.

The methodology developed in this paper is illustrated through an investigation of policy

effectiveness in agricultural markets. Specifically, we analyze whether and how food security

in one country is affected by policy incentives or disincentives to agricultural producers in that

specific country, as well as by those of its commercial partners. This empirical application is mo-

tivated by the extensive literature documenting the substantial level of interconnection reached

by agricultural markets through the trade network (Johnson & Noguera, 2017; Balié et al., 2018),

and how the existence of such interconnections poses a serious challenge to policy makers in the

design of new policies (Gouel, 2016; Bayramoglu et al., 2018; Beckman et al., 2018; Fajgelbaum

et al., 2020).5 Our results show that interventions of a country in the agricultural market signifi-

cantly interfere with those implemented by commercial partners and have indirect effects on their

food security. Specifically, we find that when ignoring interference, the optimal level of policy

effectiveness is underestimated by roughly 30%. Our method thus provides crucial insights to

identify the additional efforts required to domestic policies in order to be effective.

Two additional elements are important to stress in relation to our empirical application. First,

only few studies have been dedicated to understand the causal link between policy interventions

and food security (Magrini et al., 2017; Allcott et al., 2019), and none of them considered the role

played by the trade network. Notwithstanding, this topic represents a matter of high interest for

academics and policy makers since the 2008 food crisis, when riots erupted in many developing

countries, and it was highly debated during the COVID-19 crisis (Glauber et al., 2020). Second,

the agricultural sector has been subjected to some of the most heavy-handed governmental in-

5Moreover, a large literature has already shown that trade can sway the impact of national policies in the primary
sector on consumers’ welfare (see among others, Burgess and Donaldson, 2010; Giuntella et al., 2020), and on the
labor market (e.g. Tombe, 2015).
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terventions over the last century (Anderson et al., 2013). The intensity of these interventions is

highly heterogeneous, differing from country to country and over time. Our methodology is able

to deal with these empirical challenges by modeling the non-discrete nature of the treatment, and

correcting for potential biases resulting from both treatment selection and interference.

The contribution of this paper is twofold. First, it complements the vast literature on impact

evaluation methods (for a review, see Sacerdote, 2014; Athey & Imbens, 2017) by adapting the

joint propensity score-based estimator developed by Forastiere et al. 2021 to deal with interfer-

ence from a continuous treatment on a weighted directed network in observational studies. Sec-

ond, it provides new insights into the optimal design of agricultural policies aiming at improving

food security in the presence of non-negligible spillover effects.

The rest of this paper is organized as follows. In Section 2 we define the potential outcomes

and the causal estimands under continuous treatment and network interference. We then describe

the JPS-based estimator. In Section 3, we present an empirical application of this method to

investigate spillover effects in agricultural markets. Finally, Section 4 concludes and draws policy

implications.

2 Methodology

2.1 Notation

Let N be a sample of N agents or units. We assume that agents are nodes embedded in a network,

and a link between two nodes exists if two agents interact in a way that the treatment on an agent

has an effect also on the outcome of the other agent. In other words, we consider interactions

that can produce spillover effects with respect to the treatment and outcome of interest. For

example, interventions on the agricultural market of one country can have an effect on other

countries through the international trade network.6 This interfering network can be represented

by the adjacency matrix A ∈A ⊆RN×N , with element ai j being a continuous value on the realm

of positive real numbers representing the inward relationship intensity from agent j to agent i.

Intuitively, in the context of a friendship network, ai j is the strength of friendship between agent

6In this framework connections can be defined both by a spatial or social criterion, including geographic prox-
imity, social or financial interactions.
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i and agent j, as seen by agent i. In the international trade network, ai j is instead the trade flow

from country i to country j: i.e., the exports of country i to j or the imports of country j from i.

Let Ni be the set of nodes sharing a link with unit i, referred to as the neighborhood of agent i.

We refer to the number of nodes contained in this set, Ni = |Ni|, as the degree centrality of agent i

(see, e.g., Jackson , 2010). Since we are considering a directed network, we have both inward and

outward connections,and the term Ni must be defined along one direction of interest (i.e. either

in or outward). Put in formula, Ni = { j ∈N : d(ai j,a ji) > 0)}, where d(ai j,a ji) is a function

of inward or outward connections between i and j. When d(ai j,a ji) = ai j, the neighborhood Ni,

also denoted by N out
i and referred to as the agent’s out-neighborhood, includes all nodes having

an edge starting from node i (e.g., countries with imports from country i). On the contrary, when

d(ai j,a ji) = a ji, the neighborhood Ni, also denoted by N in
i and referred to as the agent’s in-

neighborhood, includes all nodes having an edge pointing to node i (e.g., countries with exports

to country i). Similarly, denote by N−i the set containing all nodes other than i that are not in Ni.

For each node i, we thus obtain a partition of the set of nodes N as (i,Ni,N−i).

We now denote by Yi ∈Y the observed outcome for agent i, and by Y the corresponding vec-

tor. We let Zi ∈Z ⊆ R be the continuous treatment received by agent i, referred to as individual

treatment, and Z the corresponding vector. Under the potential outcome framework, Yi(Z) is the

potential outcome of unit i under the treatment vector Z in the whole network. For each unit i,

the object (i,Ni,N−i) defines the partition of the treatment vector (Zi,ZNi,ZN−i). The potential

outcome of unit i can be thus written as Yi(Zi,ZNi,ZN−i). Here, we adopt a model-based perspec-

tive for inference (Imbens & Rubin, 2015; Hernán & Robins, 2020), whereby potential outcomes

are considered random variables whose observed values are drawn from a specified model. 7

Finally, consider Xind
i ∈X ind as the vector of Kind individual-level covariates for agent i: for

instance, i’s economic and social characteristics. Similarly, Xneigh
i ∈X neigh denotes the vector

of Kneigh neighborhood covariates for agent i. This may include two types of i’s neighborhood-

level covariates: i) variables representing the structure of the neighborhood Ni (e.g., the degree

7This perspective is consistent with the empirical application shown in this paper, where the sample of countries
in a specific time period cannot be seen as a random sample from a larger superpopulation, as under the more
common superpopulation perspective, where potential outcomes are considered fixed variables and the randomness
in the observed outcomes is given by the randomization and the sampling mechanism. Note that this model-based
approach is equivalent to a superpopulation perspective where potential outcomes are considered fixed variables and
the sampling mechanism reproduces the distribution of outcomes drawn from the model used in the model-based
perspective (Hernán & Robins, 2020).
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of the agents embedded in Ni, or other measures of network centrality and connectivity), and ii)

variables representing the composition of the neighborhood Ni (i.e., aggregational characteristics

summarizing individual attributes of nodes j ∈Ni).8 The terms Xind
i and Xneigh

i are then com-

bined into the vector Xi ∈X composed by K = Kind +Kneigh covariates, which represents the

set of all exogenous pre-treatment variables for agent i.

It is worth noting that not all variables defined so far are observed at the same time, but they

follow a specific causal order. Agents’ characteristics X are formed before agents receive treat-

ment Z. On the contrary, connections registered by A are those existing at the time when the

treatment Z is assigned, meaning that treatment and network structure are observed simultane-

ously, and they have no effect on each other. Finally, the outcome vector Y is that observed after

the treatment Z has been received by agents. We further assume that the adjacency matrix A is

fixed or does not vary between the time the treatment is measured and the time the outcome is

realized.9 In summary, X is observed at time t−1, A and Z are registered simultaneously at time

t, and Y is recorded at time t +1.

2.2 The Stable Unit Treatment on Neighborhood Value Assumption

In impact evaluation methods, it is standard to assume that agent’s potential outcome depends

only on agent’s own treatment, namely the individual treatment Zi. This assumption, combined

with the consistency assumption, is referred to as the Stable Unit Treatment Value Assumption

(SUTVA) (Rubin, 1980). However, in the presence of interference agents are also exposed to the

treatment received by other units and SUTVA does no longer hold. Here, we replace SUTVA

with the Stable Unit Treatment on Neighborhood Value Assumption (SUTNVA), a common as-

sumption in the literature of causal inference with network interference (Van der Laan, 2014;

Sofrygin & van der Laan, 2017; Ogburn et al., 2022; Forastiere et al., 2021). SUTNVA consists

of two elements. The first is the consistency assumption, which ties the potential outcomes to the

observed data and ensures that the potential outcome is well defined (Rubin, 1986):

8Specifically, this function takes the form of h(Xind
Ni

;A), where Xind
Ni

is a |X ind | ×Ni matrix collecting all the
neighbors’ individual covariates, and h(·) is a function h : (X ind)Ni ×A →Hi summarizing the matrix Xind

Ni
into a

vector of dimension |Hi|< |X ind |×Ni.
9In our empirical application the adjacency matrix is likely to vary and be affected by the treatment. In Section

3 we will make further assumptions to be able to use the method developed here in the context of such application.
The implications and the validity of these further assumptions are discussed in Section 3.
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Assumption 1 (Consistency) There are no multiple versions of the treatment. Formally: Yi =

Yi(Z).

This assumption states that the treatment is well defined and any variation within the treatment

specification would not result in a different outcome. As a consequence, a subject’s potential

outcome under the observed treatment vector is indeed their observed outcome.

The second element of the SUTVNA is the first-order interference assumption, which restricts

interference within the neighborhood. This assumption is formalized using a function g : Z Ni×

A → Gi, with Gi ⊆ R, which maps the treatment vector of unit i’s neighbors, i.e. Ni = { j ∈

N : d(ai j,a ji) > 0} into a (continuous) value representing unit’s exposure to the neighborhood

treatment.

Assumption 2 (First-Order Interference with Exposure Mapping) Given a function g : Z Ni×

A → Gi, ∀ZN−i,Z
′
N−i

and ∀ZNi,Z
′
Ni

such that g(ZNi;A) = g(Z ′Ni
;A), the following equality

holds:

Yi(Zi,ZNi,ZN−i) = Yi(Zi,Z ′Ni
,Z ′N−i

)

Assumption 2 states that interference acts only within the immediate neighborhood, that is, an

agent is exposed to her own treatment and the treatment of direct connections in the network. As-

suming first-order interference, which restricts spillovers to neighboring units only, is common

in the literature of causal inference with network interference (Van der Laan, 2014; Sofrygin &

van der Laan, 2017; Ogburn et al., 2022; Forastiere et al., 2021) and plausible in many settings.10

A crucial element of assumption 2 is how the dependence of agent i’s outcome from the treat-

ments received by neighboring agents is formalized. This is done through a specific summarizing

10Observe that three mechanisms usually motivates the presence of interference from the treatment received by
other units: i) diffusion of the treatment, that is, the treatment uptake diffuses across the network and the individual
treatment of unit i, influenced by other units’ treatment, has in turn an effect on his own outcome; ii) direct interfer-
ence, which is observed when the individual treatment and other units’ treatments both concur directly to modify i’s
own outcome; and iii) diffusion of the outcome (also knows as peer influence), that is, one’s outcome is influenced
by other units’ outcome, which in turn are affected by their own treatment (e.g., behavioral outcomes or infectious
diseases). Among the three, only direct interference usually produces a first-order interference. On the contrary, the
other two mechanisms might lead to higher-order interference. Nevertheless, our framework can be safely applied
to the study of all mechanisms. In fact, one can limit the investigation of interference at first-order neighbors, pro-
vided that treatment and outcome diffusion take place over a time period longer than that needed for the individual
treatment to have an effect (Ogburn et al., 2018). Even when this is not the case, one can usually center the analysis
on first-order interference and disregard higher-order effects, because the effect of interference often decreases with
network distance and becomes negligible (Manski, 2013).
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function g : Z Ni×A → Gi, also known as exposure mapping function (Aronow & Samii, 2017).

Exposure mapping conveys the idea that one’s outcome is not separately affected by the treatment

status of every neighbor, but by a summary of the neighborhood treatment vector. This allows a

reduction of the number of potential outcomes under interference and, hence, facilitates identifi-

cation and estimation of causal estimands. We denote by Gi = g(ZNi;A) a unit’s exposure to the

treatment received by his network neighbors, and we refer to it as neighborhood treatment.

By virtue of Assumption 2, we can define the potential outcomes of agent i in terms of the

individual treatment and the neighborhood treatment: Yi(Zi = z,Gi = g), henceforth, Yi(z,g).

Specifically, Yi(z,g) represents the potential outcome of node i under treatment z, whereby agent

i is exposed to the neighborhood treatment g through connected agents. This allows us to disen-

tangle the effect of the individual treatment from that resulting from the exposure to the treatment

received by other agents located in the network neighborhood.

2.3 Neighborhood Treatment in a Weighted Directed Network

The specification of the exposure mapping function g(·), defining the neighborhood treatment Gi,

depends on the mechanism of interference hypothesized for the treatment and outcome of interest.

Most common definitions of the neighborhood treatment are the number of treated neighbors, i.e.,

Gi =∑ j∈Ni Z j, or the proportion, i.e., Gi =∑ j∈Ni Z j/Ni. The former is used when we assume that

an agent’s outcome depends on the number of neighbors receiving the treatment, regardless of

the specific neighbors being treated, whereas the latter is used when an agent’s outcome depends

on the proportion of treated neighbors, regardless of the treatment status of each neighbor and the

number of neighbors. Nevertheless, in many settings the extent to which the treatment of a unit

spills over to the outcome of another connected unit depends on the intensity of the connection as

well as its direction. For example, in a friendship network, peer influence between two individuals

might depend on the intensity of friendship between them. Similarly, in the trade network, the

spillover effect of policy interventions in one country’s market on another country’s outcomes

may be the result of, among other things, the trade intensity between the two countries, both in

absolute or relative terms. Thus, the way a country i’s policy affects another country j could be

determined not only by the absolute trade flows between them, but also by the relative importance

of their commercial partnership within the trade network.
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A desirable feature of Assumption 2 applied to a weighted directed graph is that it allows

network effects on agents to vary according to the intensity and the direction of their ties within

the network. This implies that the level of first-order interference depends on the position of the

agent in the network, considering both the direction and intensity of the link between agents.

Given a weighted directed network, represented by the adjacency matrix A, we can express the

neighborhood treatment as the following weighted sum:

Gi = ∑
j 6=i

ωi j(A)

C
Z j (1)

where ωi j(A) is a weight function depending on the entries of the adjacency matrix A and C

is a normalizing constant (e.g., N). Let ωi j(A) = d(ai j,a ji)/si j(A), where si j(A) is a normal-

izing function. The numerator d(ai j,a ji) determines the direction of the interference mecha-

nism and the absolute inward or outward intensity of the relationship between i and j. When

d(ai j,a ji) = ai j, agent i is exposed to the treatment received by all the agents having an edge

incoming from agent i, that is, all agents in N out
i , and the exposure weight will depend on the

outward relationship intensity ai j between j and i. In a friendship network, N out
i is the set

of friends nominated by agent i, who is assumed to be exposed to the treatment of each friend

j ∈N out
i in a way proportional to the strength of the friendship ai j, as seen by agent i. Similarly,

in a trade network, N out
i is the set of export trading partners of country i, which will be affected

by their market interventions, and the effect of each partner j ∈N out
i depends on the volume of

exports from country i to country j. 11

In a directed network with an asymmetric adjacency matrix, we could also have d(ai j,a ji) =

a ji. In this case, an agent i is exposed to the treatment received by all the agents having an

outgoing link to agent i, that is, all agents in N in
i and the exposure weight will depend on the

inward relationship intensity a ji between i and j. In our examples, this corresponds to the strength

of the friendship a ji, as seen by agent j, or the imports of country i from country j. This choice of

weights amounts to assuming that the effect on country i of the policy interventions implemented

in its import trading partners j ∈ N in
i is proportional to the volume of imports of country i

from them. Therefore, the definition of the function d(ai j,a ji) in the exposure mapping function

11A weight equal to ωi j(A) = ai j has been used in Zigler et al. (2023), which considers a bipartite setting where
the spillover effect can only be defined in one direction from the interventional units to the outcome units.
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determines the direction of spillover effects: i.e., inward or outward. In Section 3, because of the

hypothesized mechanism of interference, we will consider spillover effects through import flows

only.

While the numerator d(ai j,a ji) represents the absolute relationship intensity between i and j,

the normalizing function si j(A) determines the relative importance of agent j to agent i. There

are many intuitive applications of this normalizing function. Consider for instance the vector

ai·, which corresponds to the ith row of the adjacency matrix. One could weight the trade flows

d(ai j,a ji) = ai j from country i to j by the total exports of country i, i.e., si j(A) = ‖ai·‖1 = ∑k aik,

and express the neighborhood treatment as Gi = ∑ j 6=i
ai j
‖ai·‖1

Z j. In this case, Gi is a weighted

average of the treatment of partners of country i with weights given by the proportion of exports

of country i to each country, or, put differently, it is the average treatment of partner countries if

their imports from country i were equal to the average export volume of country i. Conversely,

now consider the vector a·i, that is the ith column of the adjacency matrix. Using this vector, one

could weight the trade flows d(ai j,a ji) = a ji from country j to i by the total imports of country

i, i.e., si j(A) = ‖a·i‖1 = ∑k aki, and model the neighborhood treatment as Gi = ∑ j 6=i
a ji
‖a·i‖1

Z j. In

this case, weights are given by the proportion of imports of country i from each country, and

Gi can be interpreted as the average treatment of partner countries if their exports to country

i were equal to the average import volume of country i. Similarly, sometimes we might want

to normalize the influence of agent j to agent i by the country j’s trade volume. Thus, the

normalizing factor can be the total exports or imports of country j, i.e., si j(A) = ‖a j·‖1 = ∑k a jk

or si j(A) = ‖a· j‖1 = ∑k ak j. Of course, instead of taking total values, such as the sum of exports

from i, we can use averages as a normalization factor, e.g. the average exports from i. Finally, one

can use as a normalizing factor the total sum of the adjacency matrix, i.e., si j(A) = ∑i ∑ j ai j, or

its average value si j(A) = ∑i ∑ j ai j/N2. When taking averages, an alternative solution could be

to divide only by the number of pairs with d(ai j,a ji) 6= 0, that is, taking the average import/export

volume among those with a non-zero volume.

2.4 Causal Estimands

Our formalization of the bivariate continuous joint treatment allows to model the potential out-

come of unit i Yi(z,g) as a dose-response function. Therefore, we define the marginal mean of
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the potential outcome Yi(z,g), for each value of z and g, as the average dose-response function

(aDRF), denoted by µ(z,g). Formally, let

µ(z,g) = E[Yi(z,g)] (2)

where the expectation is taken over the marginal distribution of potential outcomes under the

model-based perspective. µ(z,g) can be marginalized to get the univariate average dose-response

functions

µ
Z(z) =

∫
g

E[Yi(z,g)]pG(g)dg and µ
G(g) =

∫
E[Yi(z,g)]pZ(z)dz (3)

where pG(g) and pZ(z) are the observed marginal densities of the neighborhood and individual

treatments. Using the univariate average dose-response functions, we can define direct effects of

the treatment as comparisons of the form δ (z,z′) = µZ(z)− µZ(z′), or as the first derivative of

the average dose-response function δ (z,dz) = dµZ(z)
dz . Similarly, spillover effects can be defined

as the difference between the average potential outcome corresponding to two different levels of

the neighborhood treatment g and g′: δ (g,g′) = µG(g)−µG(g′), or as the first derivative of the

average dose-response function δ (g,dg) = dµG(g)
dg .

2.5 Unconfoundedness of the Joint Treatment

To draw causal inference, it is standard in the literature to rely on the unconfoundedness as-

sumption, which implies that the treatment can be considered to be randomly assigned after

accounting for agents’ differences in a fixed set of exogenous pre-treatment characteristics (Ru-

bin, 1990). However, in the presence of interference, we require that both the individual and the

neighborhood treatments should be unconfounded conditional on covariates.

Assumption 3 (Unconfoundedness of the Joint Treatment) Conditional on the vector of co-

variates Xi, the potential outcome Yi(z,g) is independent of the level of the treatments Zi and

Gi:

Yi(z,g)⊥⊥ Zi,Gi | Xi ∀z,g,∀i

Assumption 3 states that for agents with the same values of covariates Xi, the distribution of a
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potential outcome Yi(z,g) does not depend on the actual treatments Zi and Gi that each agent

receives. Conditional independence of Yi(z,g) essentially posits an exogeneity assumption of

the joint treatment and it rules out the presence of unmeasured factors affecting the potential

outcome of an agent i and either their own treatment or the treatment received by their neighbors

(Forastiere et al., 2021).

Therefore, Xi should include all individual-level characteristics Xind
i that are potential con-

founders of the relationship between Zi and Yi. In a longitudinal setting with time-varying treat-

ment and repeated measures of the outcome, we might need to further control for lagged treat-

ments and outcomes affecting the current treatment and outcome. Furthermore, in order to en-

sure the unconfoundedness of the neighborhood treatment, the vector of covariates Xi should

also include neighborhood covariates Xneigh
i , when these are likely to affect the outcome of agent

i. As discussed in Section 2.1, Xneigh
i may include: i) variables representing the structure of

the neighborhood Ni, and ii) variables representing the composition of the neighborhood. In a

weighted directed network, the former variables should be derived from the neighborhood as-

sumed to be affecting the mechanism of interference (i.e., N in
i or N out

i ). Structural variables

might be for instance the average neighborhood in-degree or out-degree, in the unweighted (e.g.,

Nout
i = ∑ j I(ai j > 0)) or weighted version (e.g., Nout,w

i = ∑ j ai j). Instead, the composition of the

neighborhood, can be summarized using a function h(·) of the individual characteristics among

neighbors. Specifically, for each individual-level covariate k = 1, . . . ,Kind , one may take the

summary h(Xind
Ni,k;A), where Xind

Ni,k is the vector collecting the covariate X ind
j,k for all j ∈ Ni,

and h(·) corresponds to the exposure mapping function g(·) or to its unweighted version, e.g.,

h(Xind
Ni,k;A) =

∑ j 6=i I(d(ai j,a ji)>0)X ind
j,k

∑ j 6=i I(d(ai j,a ji)>0) .

It is worth noting that Assumption 3 rules out the endogeneity of the adjacency matrix A. In

particular, it rules out the presence of unobserved factors that can affect both the network for-

mation, and thus Gi and agents’ outcome. When estimating causal effects on networks, a major

concern is the presence of homophily, that is, the tendency of forming a link between two agents

that share similar characteristics. Factors driving network formation in homophilous networks,

are considered confounders if they affect a unit’s outcome and they also affect the intensity of

relationships in A, used to defined the weights in Gi and/or the distribution of treatment among an

agent’s network neighborhood, also affecting the value of Gi. The factors would be confounders
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of the relationship between Yi(z,g) and Gi. However, Assumption 3 allows the presence of ho-

mophily, as long as the characteristics driving the network formation are either measured, and

included in Xi, or do not affect the outcome. In the case of homophily caused by the outcome

variable, that is, agents with similar outcomes are more likely to form a link, lagged neighbors’

outcomes should also be included in the adjustment set Xi. Finally, homophily caused by the

treatment variable, that is, agents with similar treatment values are more likely to form a link,

generates a correlation between Zi and Gi. However, it does not invalidate the unconfoundedness

assumption per se, as long as confounders of the treatment-outcome relationship are included in

Xi. It is worth noting that homophily caused by the treatment variable will increase the bias due

to not accounting for interference (Forastiere et al., 2021).

2.6 Joint Propensity Score-based Estimator

We now discuss our joint propensity score-based estimator to obtain an unbiased estimate of

both the treatment and the spillover effects. This estimator balances individual and neighbor-

hood covariates across agents under different levels of individual and neighborhood treatments

by controlling for the joint propensity score.

Formally, we define the joint propensity score (JPS) ψ(z;g;x) as the joint density of the indi-

vidual treatment and network exposure conditional on covariates, that is, the relative likelihood

of being subject to direct treatment z and being exposed to a weighted average of the treatments

of the agent’s connections equal to g, given characteristics Xi = x:

ψ(z;g;x) = pZG|X(z,g|x)

= pG|ZX(g|z,x)pZ|X(z|x)
(4)

where φ(z;x) = pZ|X(z|x) is the individual propensity score, i.e., the probability density function

(PDF) of the individual treatment conditional on covariates, and λ (g;z,x) = pG|ZX(g|z,x) is the

neighborhood propensity score, i.e., the probability density function of the neighborhood treat-

ment conditional on the value z of the individual treatment and on the vector of covariates Xi.

By definition, the individual and neighborhood propensity scores are two joint balancing scores;

that is, Xi ⊥⊥ 1(Zi = z,Gi = g) | φ(z;Xi),λ (g;z,Xi). This means that, within strata with the same

values of φ(z;Xi) and λ (g;z,Xi), the joint probability distribution of the individual treatment Zi
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and the neighborhood treatment Gi does not depend on the value of Xi. In other words, individ-

ual and neighborhood covariates are balanced across agents with the same values of φ(z;Xi) and

λ (g;z,Xi), but with different levels of individual and neighborhood treatments. 12

Given Assumption 3, thanks to the balancing property of the propensity scores, it follows that

the assignment to the joint treatment is unconfounded conditional on both the individual and the

neighborhood propensity scores (Forastiere et al., 2021). Formally, we can state the following

proposition.

Proposition 1 (Unconfoundedness of the Joint Treatment) Under Assumptions 1 and 2 , if As-

sumption 3 holds, then Yi(z,g)⊥⊥ Zi,Gi | φ(z;Xi),λ (g;z,Xi),∀z,g,∀i.

This result implies that any bias associated with differences in the distribution of covariates across

groups with different treatment levels can be removed by adjusting for both propensity scores.

Consequently, given the factorization of the joint propensity score into the product of the indi-

vidual propensity score and neighborhood propensity score (4), we can control for the vector of

covariates Xi by adjusting for the two propensity scores.

Proposition 2 (Identification of Causal Estimands) Under Assumptions 1, 2 and 3, thanks to

Proposition 1, causal quantitities are identified from the observed data as follows:

µ(z,g) = E[Yi|Zi = z,Gi = g,φ(z;Xi),λ (g;z,Xi)] (5)

µ
Z(z) = E[Yi|Zi = z,Gi,φ(z;Xi),λ (Gi;z,Xi)] (6)

µ
G(g) = E[Yi|Zi,Gi = g,φ(z;Xi),λ (g;Zi,Xi)] (7)

where in Equation (5) the expectation is over the distribution of the observed outcome, the indi-

vidual and neighborhood propensity score, while in Equation (6) it is also over the distribution of

the neighborhood treatment, and in Equation (7) it is also over the distribution of the individual

treatment.

Given Proposition 2, an unbiased estimator of the conditional expectations on the right side of

the identification equations is unbiased for the causal quantities on the left side of the equations.

12Appendix B provides a detailed discussion of the balancing property and methods for balance check.
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To estimate the conditional expectations of the observed outcome for different values of the

individual and neighborhood propensity scores, we propose an extended version of the model-

based generalized propensity score approach (GPS) introduced by Hirano & Imbens (2004).

Forastiere et al. (2021), who deal with a binary individual treatment, use a subclassification

method to adjust for the individual propensity score and, within each stratum, the model-based

GPS approach to adjust for the neighborhood propensity score. Our estimator builds on Forastiere

et al. (2021) by replacing the subclassification on the individual propensity score of the binary

treatment with a second generalized propensity score for continuous treatment.

Following the identification results in Proposition 2, we now formalize the procedure to esti-

mate the marginalized univariate dose-response functions µZ(z) and µG(g).

2.6.1 Estimation Procedure

In what follows, we outline the estimating procedure for the average dose-response function

µ(z,g), and, in turn, the treatment and spillover effects. Consider the following general models

for the individual treatment Z, the neighborhood treatment G, and the outcome Y:

Zi ∼ f Z(Xi;θ
Z) (8)

Gi ∼ f G(Zi,Xi;θ
G) (9)

Yi(z,g)∼ fY (z,g,φ(z;Xi),λ (z;g;Xi);θ
Y ) (10)

where the potential outcome model (10) depends on both propensity scores. According to the

models in (8), (9), and (10), the estimation procedure requires the following steps.

1. Estimate the parameters θ
Z and θ

G of the models for the individual treatment in (8) and

for the neighborhood treatment in (9);

2. Use the estimated parameters in Step 1 to predict for each unit i ∈ N the actual in-

dividual propensity score Φ̂i = φ(Zi;Xi) and the actual neighborhood propensity score

Λ̂i = λ (Gi;Zi;Xi); that is, the PDFs of the individual treatment and neighborhood treat-

ment, conditional on the covariates Xi, evaluated at the values Zi and Gi that were actually

observed for unit i;
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3. Estimate the parameters θ
Y of the outcome model in (10) by using the observed data

{Yi,Zi,Gi,Xi} and the predicted propensity scores Φ̂i and Λ̂i;

4. For each level of the joint treatment (Zi = z,Gi = g), predict for each unit i ∈N the corre-

sponding individual and the neighborhood propensity scores (i.e., φ(z;Xi) and λ (z;g;Xi)),

and use these predicted values to impute the potential outcome Yi(z,g):

Yi(z,g)∼ fY (z,g, φ̂(z;Xi), λ̂ (z;g;Xi); θ̂
Y
)

5. To estimate the average dose-response function µ(z,g), for each level of the joint treatment,

take the average of the potential outcomes over all units:

µ̂(z,g) =
1
N

N

∑
i=1

Ŷi(z,g) (11)

6. The univariate average dose-response functions are then obtained by averaging over the

marginal densities p̂G(g) and p̂Z(z):13

µ̂
Z(z) =

∫
g

µ̂(z,g)p̂G(g)dg and µ̂
G(g) =

∫
µ̂(z,g)p̂Z(z)dz (12)

In practice, given the continuous nature of Z and G, we use a grid of values (Z ?,G ?), defined by

the percentiles of the empirical distributions of Z and G. Therefore, steps 4 and 5 are conducted

over the grid (Z ?,G ?). The marginalization in step 6 is then performed as follows:

µ̂
Z(z) = ∑

g∈G ?

µ̂(z,g)P̂r(Gi = g) and µ̂
G(g) = ∑

z∈Z ?

µ̂(z,g)P̂r(Zi = z) (13)

where P̂r(Gi = g) = p̂G(g)/∑h∈G ? p̂G(h) and P̂r(Zi = z) = p̂Z(z)/∑h∈Z ? p̂Z(h) are the probabil-

ity mass functions of the discretized Z and G. Any other discretization method can be used.

Steps 1-6 describe an imputation-based method to estimate the conditional expectations on the

right side of the identification equations in Proposition 2. We can state the following conditions

for the unbiasedness of the proposed estimator.

13Marginal densities p̂G(g) and p̂Z(z) are estimated using the same probability distributions f Z(·) and f G(·) as in
models (8) and (9) without conditioning on covariates. In fact p̂G(g) = EX ,Z [λ (g;z,x)] and p̂Z(z) = EX [φ(z;x)].
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Proposition 3 (Unbiasedness) If the individual and neighborhood treatment models in (8) and

(9) as well as the outcome model in (10) are correctly specified, and an unbiased estimator of

the model parameters θ is used in Steps 1 and 3, the estimation procedure, including Steps 1-6,

results in an unbiased estimator of the causal quantities µ(z,g), µZ(z) and µG(g).14

Propensity scores and outcome models can be estimated in Steps 1 and 3 using maximum

likelihood estimation for generalized linear models. Instead, Hirano & Imbens (2004) use a

simple linear regression for the generalized propensity score model and a flexible polynomial

regression for the outcome model. However, other semi-parametric or non-parametric methods

can be used. Zhu et al. (2015) propose the use of a tree-based boosting algorithm to estimate

the generalized propensity score of a continuous treatment, while Bia et al. (2011) and Flores et

al. (2012) propose penalized splines with tensor products or radial basis functions and a kernel

estimator with a polynomial regression.

Standard errors and 95% confidence intervals can be derived using bootstrap methods, taking

into account the uncertainty given by both data sampling and estimation of the propensity score

models (Efron, 1979).15 This is done by resampling the data and refitting both the propensity

scores and the outcome models (Forastiere et al., 2021).16

14See Austin (2018) for an assessment of the performance of GPS-based estimators.
15Hirano & Imbens (2004) state that asymptotic standard errors of the estimated average dose-response function

could be computed by using an estimating equations approach that takes into account the estimation of the general-
ized propensity score and the parameters of the outcome model. Root-N consistency and asymptotic normality can
be obtained using this estimator. However, they suggest the use of bootstrap methods for practical reasons.

16The bootstrap procedure relies on an independent sampling strategy with replacement, which is only appropriate
if the researcher can rule out the presence of a residual correlation between potential outcomes of partner countries
after conditioning for covariates. Forastiere et al. (2021) show the performance of the generalized propensity score-
based estimator with bootstrap standard errors in a setting with independent errors. Clustering at the geographical
level or by employing a community detection algorithm (see Forastiere et al., 2021, 2022) would be a promising
avenue for future research. Alternatively, one may consider to design the bootstrap procedure following the recent
works by Kojevnikov (2021), Kojevnikov, Marmer V, & Song K (2021), and Leung (2023), which provide different
methods for robust inference with data exhibiting network dependence. Unfortunately, these methods can only
be applied when dealing with a cross-sectional directed unweighted network which is sufficiently sparse. On the
contrary, in our application we consider a dense directed weighted network which varies over time (across years
the density of the trade network varies from a minimum of 0.61 to a maximum of 0.86, with 0.81 being the median
value). The extension of these methods to our context of inquiry is left for future work. For additional considerations
on this merit, see footnote 26.
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3 Empirical Application

In this section, we illustrate how our methodology works in practice through an application to

the agricultural markets in the presence of interference. In particular, we aim to assess the direct

effect of national policy interventions for agricultural producers on the country’s food security,

as well their spillover effects on food security of its commercial partners. The use of our joint

propensity score-based estimator in this context is justified by three main reasons. First, pol-

icy interventions in these markets are not random; rather, they are driven by a series of macro-

economic factors such as the country’s level of development and agroclimatic conditions, among

others. Second, the emergence of the so-called agri-food Global Value Chains (GVCs) (Johnson

& Noguera, 2017; Balié et al., 2018) has increased the probability of spillover effects generated

by national policy interventions (Gouel, 2016; Bayramoglu et al., 2018; Beckman et al., 2018;

Fajgelbaum et al., 2020). Third, the intensity of policy interventions is highly heterogeneous,

differing from country to country and over time. Our method allows us to assess the impact of a

policy while correcting for potential biases resulting from both treatment selection and interfer-

ence, and it provides the means to model the non-discrete nature of the policy intensity.

3.1 Data

We collect data on food security, the level of policy interventions, country characteristics, and

trade network from 1990 to 2010 for a sample of 73 countries (see Figure A.1 in Appendix B).17

Data are pulled from different sources, listed in Table A.1 in Appendix B. Summary statistics

are reported in Table A.2 in Appendix B. Given the longitudinal structure of the application, we

consider a country at a given year as the unit of analysis i, referred to as a country-year unit.

Outcome - Food security. Following the guidelines of the Committee on World Food Secu-

rity (CFS, 2009), food security is measured as the level of food availability, that is the supply of

food commodities in kilo-calories per person. This measure proxies the amount of food available

for consumption at the retail level.18 As an example, consider that Unites States features roughly

17To limit the potential bias that could result from interference, previous research (see e.g. Magrini et al., 2017)
excluded from the empirical analysis the countries most likely to generate or be affected by spillover effects (i.e.,
the top global exporters and importers), namely: the United States, Germany, France, Italy, Spain, the Netherlands,
Belgium, China, Brazil, Canada, Japan and the UK. In contrast, we keep these countries because it is our interest to
account for and measure interference.

18On the contrary, it does not include consumption-level waste (e.g. food wasted at retail, restaurant and household
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3700 per capita calorie supply in the year 2000. In the same year, Kenya registered only 2000

kcal per capita. Since consumers are better off when there is large food availability, we consider

that a policy aiming at improving food security is that maximizing this metric. In a robustness

check, we also consider an alternative measure of food security suggested by the CFS (2009),

that is food utilization, measured as the prevalence of anemia among children aged under five.19

Treatment - Policy intervention. Following Anderson and Nelgen (2012a,b), policy inten-

sity in the agricultural sector is assessed using the Nominal Rate of Assistance (NRA). The NRA

is an estimate of direct government policy intervention, as it measures the percentage by which

these policies have raised (lowered) gross returns to farmers above (below) what they would have

been without the government’s intervention. In other words, this is the percentage by which the

domestic producer price is above (or below, if negative) the border price of a like product, net of

transportation and trade margins. NRA is pivotal to testing our methodology since it is a con-

tinuous measure accounting for both traditional policy instruments (e.g., tariffs and subsidies)

and the additional measures untamed by the Uruguay Round Agreement on Agriculture (URAA)

(e.g., trade remedies). For ease of interpretation, we shift the support of the treatment (NRA +

1), which is known as Nominal Assistance Coefficient (NAC). Hence, for any given country and

year, the farther the NAC is from 1, the higher is the intensity of the policy interventions. More

specifically, a NAC>1 signals the presence of policies supporting the agricultural producers –

and a farm-gate price above the border price – while a NAC<1 indicates a disincentive (i.e., tax-

ation) for the agricultural sector.20 In figure A.2 in Appendix B, we show that while the richest

countries are decreasing their policy support to farmers, developing countries are increasingly

switching from taxing agricultural production to applying protectionist measures, often exceed-

ing the level of support provided by OECD countries (Swinnen et al., 2012). NAC summary

statistics by country are reported in table A.3 in Appendix B.

Covariates - Country characteristics. Borrowing from the agricultural and trade policy

literature (Anderson et al., 2013; Magrini et al., 2017), we consider a large set of variables to

explain the intensity of policy intervention. These are: real per capita GDP and total population as

a proxy of the country demand and size, respectively; per-capita arable land and the agricultural

levels). Therefore it does not coincide with actual food intake.
19Consequently, the optimal level of food security is reached when this measure is at the minimum.
20See for further references and background Anderson and Nelgen (2012a,b), who provide a detailed explanation

of the method used to develop the NRA and of the interpretation of NAC.
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total factor productivity growth index to assess the country’s relative agricultural comparative

advantage; the ratio of food imports to total exports, net food exports, and absolute (positive

and negative) percentage deviations from the trend in international food prices as a measure

of country’s access to, dependence from, and position in the global market, respectively; and

the international food price volatility index to capture country’s response to changes in price

levels. Finally, we include a dummy to capture the effect of the food crisis of 2007-08, and a

set of regional dummies to control for unobservable characteristics of African, Asian, European-

transition, Latin American, and high-income countries.

Network - Trade relationships. The network is built using agri-food trade flows over the

years under analysis. More specifically, we use from FAOSTAT the value of agricultural and food

bilateral exports in each given year for the 73 countries. Leveraging the information provided by

the observation of the network structure over time, we then obtain the square adjacency matrix A,

where the generic element ai j is equal to the export volume from country-year i to country-year j.

Note that, in this setting, ai j = 0 if i and j: i) refer to the same country, ii) indicate observations

at different points in time, or iii) ii) refer to two different countries in the same year, who do

not have export trade relationships during that year. This results in a block diagonal adjacency

matrix, where each diagonal block refers to the relationships between the 73 countries in a given

year.

3.2 Model Setup

Aim of our empirical application is to assess the short-term effects of the intensity of policy inter-

ventions on food security, given the (direct) trade connections in which the country is embedded.

Within this setting, we make some simplifying assumptions.

Temporal order and independence - The framework and statistical method developed in Sec-

tion 2 is better suited for cross-sectional settings. In order to apply our proposed method to

this setting, we make the following assumptions on the temporal order of variables and indepen-

dence between time points. First, we assume that policy interventions and the international trade

network are measured simultaneously in each given year, after the formation of countries’ char-

acteristics and before the realization of outcome variables. Second, we rule out the presence of
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country-specific and time-specific effects.21 Third, we assume away any dependence between the

observed data at different time points, that is, we assume that a country’s food security in a given

year is a result of current policies and it is independent from past food security or past domestic

and international policies. This simplifying assumption allows the identification of short-term

effects. From a statistical perspective, this ensures that the unconfoundedness assumption (3)

holds, and model estimates will not be biased.22

Interference - The substantial level of interconnection in agricultural markets, through the

agri-food GVCs, may lead to the presence of spillover effects of policies implemented in one

country on other countries’ food security. The mechanism through which interference can take

place is likely driven by a change in the trade flows due to the policies relative to the agri-

cultural market. A policy intervention designed to prevent the domestic market from food in-

security through, for instance export restrictions or tariffs on imports, may therefore have an

impact on partner countries. This type of interference mechanism justifies the first-order inter-

ference assumption and a specific definition of the exposure mapping function in Assumption 2.

First-order interference implies that only the direct trade linkages matter for the transmission of

shocks. While this assumption may appear to be overly simplistic in many settings – especially

those where interference is caused by an outcome diffusion process – in our empirical application

higher-order spillover effects seem to be unlikely. In fact, a policy implemented in one country

is likely to result in a change in trade flows with the direct partner countries. Thus, a country’s

food security could be affected by agricultural policies implemented by its trade partners through

a change in import flows, but is unlikely to be affected by policies carried out in countries from

whom it does not import any agricultural products. All in all, agricultural value chains are still

relatively short and, as shown by Auer et al. (2019), indirect trade effects are less than one third

of the total effect.23

21This assumption is made to simplify the estimation procedure. Otherwise, country-specific and time-specific
fixed or random effects could be included in the individual treatment, neighborhood treatment, and outcome models.
See Appendix C.

22If neighbors’ lagged treatment and outcome were also confounders, a correction for the potential bias in the
model estimates is obtained by including them in the conditioning set X for the propensity scores (see, for additional
details, Ogburn et al., 2018; Blackwell and Glynn, 2018).

23Higher-order spillover effects could be possible in the long run through cascading effects. For example, a
reduction in import flows and food security in country j, resulting from policies implemented in country i trading
with country j, could lead to an increase in the level of support to national agricultural producers in country j. In turn,
new policies implemented by country j could result in a reduction of exports to other partner countries. However,
these cascading effects occur through a change in policy interventions and are unlikely to take place within a year.
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Exposure Mapping - The definition of the exposure mapping function and, in turn, the neigh-

borhood treatment, relies on the assumption that a country’s food security is more likely to be

affected by policies implemented in partners from whom the country imports a large amount of

goods. This is due to export restrictions resulting from policies of other countries. Indeed, we

assume that the extent to which the intensity of a policy of country j affects country i depends

on the value of the bilateral agri-food exports from j to i, normalized by the average world trade

value. Formally, the neighborhood treatment effect (Equation 1), here referred to as the network

NAC, takes the following form:

Gi =
1

NS ∑
j 6=i

a jiZ j where S =
∑i ∑ j ai jI(ai j 6= 0)

∑i ∑ j I(ai j 6= 0)
(14)

This definition corresponds to C = N, d(ai j,a ji) = a ji, i.e., the import value of country i from

country J , and si j(A) =
∑i ∑ j ai jI(ai j 6=0)

∑i ∑ j I(ai j 6=0) is the average world trade value among all trading coun-

tries. The network NAC, Gi can then be seen as the average level of policy interventions in the

agricultural market of partner countries if their exports to country i were equal to the average

world trade value.24 It is worth noting that the element a ji of the adjacency matrix is set to 0 if j

and i are observations at different points in time. This amounts to assume that the set of partners

whose policy interventions in a given year is assumed to affect a country’s food security, in a

way proportional to their trade value, is given by the trade network of that year. That is, policy

interventions implemented by a country’s partners in previous years are assumed to not affect the

country’s food security in the current year, only allowing for short-term spillover effects. 25

Finally, as for the time-varying nature of the trade network, the framework developed in Sec-

Therefore, spillover effects of a country’s policy in a given year on food security of other countries in the same year
are likely to happen only with direct commercial partners.

24Results using additional definitions of the network NAC are available upon request.
25Note that this is a common assumption in most spatial applications (Anselin et al., 2008). In a context similar

to ours, this assumption is adopted for instance by Nenci et al. (2012), who consider spillover effects only involving
contemporary observations. Reassuringly, they also show that including the time dimension, results qualitatively
do not change. Of course, this assumption may not always hold. One way to accommodate the hypothesis of
interference across time is to remove the constraint that ai j = 0 if i and j indicate observations at different points in
time. In this way, one can generate a matrix where the blocks on the main diagonal record contemporary connections
(as in our case), and the blocks on the off-diagonal located in the lower-triangular section of the matrix register past
connections: e.g., the connection that i and j had at time t-1. In the case of such adjacency matrix and interference
across time, it may be interesting to distinguish between short-term and long-term spillover effects by defining
additional neighborhood treatments Gi representing the spillover exposure to treatments of other agents at previous
times, with weights proportional to the intensity of the relationship between agents at those previous times. This is
left for future work.
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tion 2 relies on the assumption that the adjacency matrix is fixed. On the contrary, in our empirical

application the trade network varies over time, and this could also be a result of agricultural poli-

cies. In fact, a change in the trade flows between two partner countries is actually the mechanism

through which an intervention in one of the two countries can have an effect on the other coun-

try’s food security. Nevertheless, we assume that the subsequent trade value does not interact

with the current policies. That is, the extent to which, compared to other partners, a partner’s cur-

rent policy may have a spillover effect on a country i’s food security measured within the same

year, i.e., the relative weight in the definition of the network NAC Gi, only depends on the trade

values measured during the implementation of the policy and not on the the trade values that may

have been affected by that policy and will mediate its spillover effect. For this reason, we use the

current trade network to build the interfering network NAC, and assume the subsequent change

in the trade flows as the mechanism of spillover effects. In turn, these subsequent trade flows may

interact with future policies and have a spillover effect on future partners’ food security through

another change in the trade values. Furthermore, in order for the unconfoundedness assumption

(Assumption 3) to hold, we require the network change not to be entirely explained by observed

covariates. Under these assumptions, despite the time-varying nature of the network, short-term

treatment and spillover effects are still identified.

3.2.1 Parametric Models

In order to estimate the average dose-response function (see Section 2.6.1) to assess the effec-

tiveness of countries’ policies, we first apply a zero-skewness Box-Cox transformation (Box and

Cox, 1964) to the vector of treatment, Z? = (Zk− 1)/k, where k is chosen so that the skewness

of the transformed variable is zero, and assume the following normal model for Z?:

Z? ∼ N(αZ +β
T
Z Xi,σZ) (15)

where Xi contains the set of (lagged) covariates relative to agent i, i.e., Xind
i .

Similarly, we assume the following model for the neighborhood treatment Gi

Gi ∼ N(αG +β
T
GXi +β

T
GZZi,σG) (16)
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where Gi follows a normal distribution with mean αG +β
T
GXi and variance σG. Note that in the

neighborhood treatment model we only include individual covariates Xind
i driving self-selection

into the individual treatment. This adjustment for individual covariates Xind
i only is sufficient un-

der the assumption that neighborhood characteristics Xneigh
i do not affect the individual outcome

Yi. We will relax this assumption in Section (3.4). Finally, we postulate a normal model for the

outcome given the propensity scores:

Yi(z,g)∼ N
(
q
(
z,g,φ(z;Xi),λ (z;g,Xi)

)
,σY
)

(17)

where q(·) is the sum of cubic polynomials and their interactions.26 We also include in q(·) an

interaction term between the country NAC and the network NAC. This allows the direct effect

of national policies to vary depending on the policies implemented in partner countries, and the

spillover effects to vary depending on the country NAC.

3.3 Results

We compare the effect of national policies in the primary sector on domestic food security, first

disregarding the spillover effects stemming from the trade network, and then considering them

using our JPS-based estimator.

In order to obtain causal effect of policy interventions, we need to balance individual and

network characteristics across countries under different levels of the individual treatment Zi (Di-

rect NAC) and the neighborhood treatment Gi (Network NAC). The set of characteristics used

in these models, i.e, Xi, are those described in Section 3.1. The parameter estimates from this

exercise are presented in Table 1. While column 1 reports the correlation between the intensity

of direct policy interventions and pre-treatment country characteristics, column 2 describes the

correlation between the country i characteristics and the (weighted average) intensity of policies

implemented by its commercial partners. Interestingly, we observe that partner countries tend to

provide a high support to their own agricultural sector when the country i features a large local

demand or it increases its reliance on imports. In contrast, they reduce the level of support when

trading with partners who experience price volatility. Finally, we observe that the direct national

26Similarly to Magrini et al. (2017), we tested our outcome model for different orders of the polynomial terms,
dropping those that proved not significant.
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NAC is negatively correlated with the network NAC, which suggests that, with country charac-

teristics held constant, the higher the level of support in country i the lower will be that of partner

countries.

(1) (2)
Direct NAC Network NAC

φ(z;xz) (Eq. 8) φ(g;z;xg) (Eq. 9)

real pc GDP 0.038∗∗∗ (0.007) 0.686∗∗∗ (0.068)
pc arable land −0.040∗∗∗ (0.006) −0.066 (0.055)
population 0.013∗∗∗ (0.004) 0.392∗∗∗ (0.037)
agricultural productivity −0.001∗∗ (0.0003) 0.004 (0.003)
food import/total exports −0.023∗∗∗ (0.008) 0.360∗∗∗ (0.071)
net exports −0.017∗∗∗ (0.002) 0.096∗∗∗ (0.017)
positive deviation food price −0.144 (0.143) −1.842 (1.300)
negative deviation food price −0.236∗ (0.132) −2.378∗∗ (1.208)
food price volatility −2.843∗∗ (1.102) −19.944∗∗ (10.065)
food crisis −0.030∗ (0.018) −0.118 (0.160)
Z −1.139∗∗∗ (0.208)
Constant −0.430∗∗∗ (0.080) −9.787∗∗∗ (0.732)

Observations 930 930
R2 0.527 0.420
Adjusted R2 0.519 0.410
Residual Std. Error 0.126 (df = 915) 1.150 (df = 914)
F Statistic 72.728∗∗∗ (df = 14; 915) 44.066∗∗∗ (df = 15; 914)
Regional dummies Yes Yes

Notes: Significance levels: * p< 0.1; ** p<0.05; *** p<0.01. Real pc GDP, pc arable land and population variables are in log and one
year lagged. Agricultural productivity, food import/total exports, net exports, positive deviation food price and negative deviation food price
variables are one year lagged (Source: FAOSTAT, WDI, USDA).

Table 1: Individual and neighborhood propensity scores

Following steps 2 and 3 of the proposed methodology, we then predict the individual and

neighborhood propensity scores. These are used to estimate the conditional expectation of the

outcome given by model (10).27 The estimated coefficients are reported in Table A.4 in Appendix

A.28 We then obtain the dose-response functions by following Steps 4 and 5. That is, we first pre-

27Since we make use of nonlinear functions of the individual and network NAC, model (10) implies a nonlinear
functional form on the direct and network NAC.

28Standard errors are obtained following the procedure detailed in footnote 15. In our application, the assumption
underlying the use of this procedure is that the factors contributing to food security in one country - not explained by
the set of covariates adopted in our model specification - are independent and identically distributed: i.e., unobserved
factors of food security are idiosyncratic, and peculiar to the economy of a country-time unit. Our assumption is
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dict the probability of observing each pair of values of the direct NAC (z) and network NAC (g),

and we then use the individual and neighborhood propensity scores to predict the country-level

outcomes corresponding to Yi(z,g). Finally, we obtain the dose-response function by averaging

these potential outcomes across all countries.

We report the results for the marginal aDRF when neglecting interference (i.e., when neither

the network NAC nor the neighborhood propensity score is included in the outcome model) in

Figure 1. The figure shows that policy interventions have a non-linear impact on food security.

Food security increases when governments provide a limited support to the price received by

their agricultural producers and NAC ranges between 0.9 and 1.48. Specifically, a NAC value of

1.48 is associated to the highest level of food security. By contrast, both excessive taxation and

support to the primary sector are detrimental for food availability: i.e. respectively when NAC is

lower than 0.9, and higher than 1.48. This suggests that: i) in line with Anderson et al. (2013),

taxing agricultural producers to obtain additional resources to be invested in more dynamic sec-

tors comes at a cost of lower food availability;29 and ii) a strong support to the primary sector

may result in a protection of inefficient domestic producers or crop varieties (Tombe, 2015).

Then, Figure 2 displays the marginal aDRF µZ(z) (left-hand panel) and µG(g) (right-hand

panel) when interference is taken into account. The left-hand panel of Figure 2, which represents

the aDRF of the direct NAC µZ(z) when interference is taken into account and marginalized over,

shows that the highest benefit in terms of food supply is registered when NAC value is equal to

1.78. By comparing this result with that of Figure 1, we can infer than when ignoring interference,

the impact of national policies (φ(z;Xz
i )) is overestimated by about 30%. This suggests a non-

negligible role of spillover effects in the agricultural markets, and indicates that additional efforts

are required to domestic policies in order to be effective in an interconnected world.30

valid provided that there are no omitted determinants of food security in our model specification. In this respect, we
are reassured by a large literature which has already adopted the set of variables used in our model specification: see,
e.g., Becker et al. (2012), Becker et al. (2012), Egger et al. (2012), Magrini et al. (2017), and Serrano-Domingo and
Requena-Silvente (2013). Still, in a robustness check, we relax this assumption and hypothesize that our model spec-
ification is able to rule out the correlation of unobserved factors of food security within the same year, but not across
years. Consistently, we compute standard errors using a block bootstrap approach that re-samples countries across
time, so to take into account a possible within-country inter-temporal correlation, and conditional on their character-
istics, still assume independent observations between countries. The confidence intervals of the DRF become wider,
yet all our results still hold. Results from this exercise are available upon request.

29Anderson et al. (2013) shows that taxation affects both producers and consumers. For producers, it reduces both
profits and incentives to respond to market signals. For consumers, if taxation discourages farming activity, then it
can negatively affect both demand for farm labor and wages for unskilled workers in farm and non-farm jobs.

30For completeness, in table A.4 in Appendix B, we report the estimates obtained from the outcome model when
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1.48

Figure 1: Dose-response function E[Yi(z)] of direct NAC on food availability (log scale) w/o
interference

In addition, the JPS-based estimator allows the estimation of spillover effects of policy in-

terventions in partner countries. The right-hand panel of Figure 2 represents the average dose-

response function of the network NAC µG(g) and shows that as a result of the emergence of

agri-food GVCs, it is crucial to take into account commercial partner policies when determining

the optimal level of a domestic intervention as they can either boost or counteract the effect of

local measures. Specifically, high levels of domestic food availability are reached when trad-

ing partners provide incentives to their own agricultural producers, as shown by the increasing

aDRF. This result is not surprising because producer support may boost exports and therefore

food availability in the importing country i.

The effect of the correlation between domestic and foreign policies — as mediated by the

trade network — is even clearer when we look at Figure 3, which represents the bivariate aDRF

µ(z,g). Even when governments are able to maximize their objective functions and reach the

highest level possible of welfare, the intensity of policies implemented in partner countries may

still push the supply of food far from the desired level.

Taken together, our findings highlight the fact that policy interventions have a causal non-

linear impact on different dimensions of food security and that, when ignoring interference, the

optimal level of producers’ support is underestimated by roughly 30%. Specifically, according

to Figure 1, we find that the highest benefit in terms of food supply is registered when NAC is

neglecting interference (column 1), and when including it (column 2).
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Figure 2: Marginal dose-response function µZ(g) of direct NAC (left-hand) and marginal dose-
response function µG(g) of network NAC (right-hand) on food availability (log scale) with inter-
ference

equal to 1.48 and that the highest marginal benefit, on average, is obtained by eliminating residual

taxation and moving to limited support, that is when NAC values range from 0.9 to 1.48. Thus,

if the NAC is lower than 0.9 - equivalent to taxing producers - or greater than 1.48 - equivalent

to strong support for producers - the level of food availability starts to decrease. Therefore, both

excessive taxation and support to the primary sector are found to be detrimental to food security.

Secondly, when interference is taken into account, Figure 2 shows that the highest benefit in

terms of food supply is registered when the NAC is equal to 1.78. As a result, when ignoring

interference, the point at which the support to agricultural producers is optimal turns out to be

underestimated.

3.4 Robustness Checks

We test the robustness of our results considering two potential threats to our identification. First,

we consider the case when the confounding set Xi achieving unconfoundedness includes both

individual and neighborhood characteristics (see Section 2). This is due to the neighborhood

characteristics not only affecting the neighborhood treatment but also the unit’s outcome. In the

context of our application, the existing literature provides us with some guidance to implement
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Figure 3: Average dose-response function µ(z,g) of direct NAC and network NAC on food
availability (log scale) with interference

this exercise. The network adopted in our empirical exercise is composed of bilateral agri-food

trade flows among the countries under analysis. The determinants of these flows are well ex-

plained by the gravity equation, which is often referred to as the workhorse model in international

trade (Anderson and Van Wincoop, 2003). The gravity equation posits that trade between two

countries is proportional to their respective sizes, i.e., the so-called “size term”, and inversely

proportional to the distance between them, i.e., the so-called “trade cost term”. It is standard to

proxy the size term using the GDP (per capita) and to measure the trade cost term with various

geographic and trade policy variables, such as bilateral geographical distance, tariffs, and the

presence of regional trade agreements (RTAs) between partners i and j. Therefore, the GDP of a

country and its partners can be considered a variable driving the homophily of the trade network

and also affecting the country’s outcome.31 As explained in Section 2.5, this does not invalidate

the unconfoundedness assumption provided that it is included in the confounding set Xi. How-

ever, the GDP per capita of a country’s partners is likely to be affecting not only the partners’

policy interventions, and thus the network NAC, but also the country’s food security through a

change in the trade flows. In this case, not including the partners’ GDP in the confounding set

may invalidate the unconfoundedness assumption. Consistently, while in the previous analysis

we made use of only agent-level variables, in this section we introduce the weighted average of

31According to literature, in fact, food availability and NAC are mainly affected by GDP per capita, arable land,
productivity, population, and trade openness. See, among others, Garrett and Ruel (1999), Rose (1999), Misselhorn
(2005), Feleke et al. (2005), Pangaribowo et al. (2013).
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(1) (2)
Direct NAC Network NAC

φ(z;xz) (Eq. 8) φ(g;z;xg) (Eq. 9)

real pc GDP 0.047∗∗∗ (0.008) 0.038∗∗∗ (0.011)
pc arable land −0.040∗∗∗ (0.006) 0.043∗∗∗ (0.009)
population 0.019∗∗∗ (0.004) 0.005 (0.006)
agricultural productivity −0.001∗∗ (0.0003) −0.002∗∗∗ (0.0005)
food import/total exports −0.016∗∗ (0.008) 0.028∗∗ (0.011)
net exports −0.015∗∗∗ (0.002) 0.006∗∗ (0.003)
positive deviation food price −0.160 (0.141) −0.593∗∗∗ (0.207)
negative deviation food price −0.262∗∗ (0.131) −0.383∗∗ (0.193)
food volatility −3.034∗∗∗ (1.091) −3.933∗∗ (1.604)
food crisis −0.030∗ (0.017) −0.061∗∗ (0.025)
Network real pc GDP −0.002∗∗∗ (0.0005) 0.132∗∗∗ (0.001)
Z 0.198∗∗∗ (0.034)
Constant −0.598∗∗∗ (0.087) −0.188 (0.127)

Observations 930 930
R2 0.538 0.985
Adjusted R2 0.530 0.985
Residual Std. Error 0.125 (df = 914) 0.183 (df = 913)
F Statistic 70.849∗∗∗ (df = 15; 914) 3,829.031∗∗∗ (df = 16; 913)
Regional dummies Yes Yes

Notes: Significance levels: * p< 0.1; ** p<0.05; *** p<0.01. Real pc GDP, pc arable land, population variables and network real pc GDP
are in log and one year lagged. Agricultural productivity, food import/total exports, net exports, positive deviation food price and negative
deviation food price variables are one year lagged (Source: FAOSTAT, WDI, USDA).

Table 2: Individual and neighborhood propensity scores with neighborhood-level covariates

the real per capita GDP among the country’s partners as a specific network-level variable. Table 2

reports the estimated parameters of the models for the individual and the neighborhood treatments

when including this additional covariate. The results are in line with our baseline specification

and further show that the network real per capita GDP is negatively correlated with the direct

NAC and positively associated with the network NAC.32 Moreover, we find that the outcome

model still confirms our main results of Figure 2, although with wider confidence intervals for

both aDRFs and a lower maximum point for µG(g) (1.61) (Figure 4 and Table A.5). All in all,

these results suggest that our model specification does not suffer from a misspecification of the

confounding set, including the determinants of network connections and, in turn, the outcome.

32The goodness of fit of the Network NAC model clearly improves when including this additional covariate, as it
explains most of the variability of the Gi variable, the network NAC.
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Figure 4: Marginal dose-response function µZ(z) of direct NAC (left) and marginal dose-
response function µG(g) of network NAC (right) on food availability (log scale) with
neighborhood-level covariates

Second, we make use of an alternative proxy for food security, i.e. food utilization. Measured

as the prevalence of anemia among children aged under five, consumers are better off when this

measure is minimized. The results are presented in Figures 5 and 6 (and in Figure A.3 and Table

A.6 in Appendix B, which reports the coefficients of the four outcome models so far analyzed).

A low level of intervention (i.e., when NAC is about 1.4) is still conducive of high consumer

welfare (Figure 5). But again the optimal level of support is underestimated when considering
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Figure 5: Dose-response function E[Yi(z)] of direct NAC on food utilization (log scale) w/o
interference
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Figure 6: Marginal dose-response function µZ(z) of direct NAC (left) and marginal dose-
response function µG(g) of network NAC (right) on food utilization (log scale) with interference

interference, as the minimum point moves from 1.4 to 1.6 (Figure 6). The same is true also

when introducing neighborhood-level characteristic, as presented in Figure A.4 in Appendix A.

Therefore, different measures of food security lead to similar conclusions.

Further robustness checks are conducted in Appendix C. Here, we test the robustness of our

results when using different model specifications of both the outcome and propensity score mod-

els. As for the model specification of the outcome model, we have replaced the cubic polynomial

with quadratic terms (Figure A.5), linear terms (Figure A.6), or splines (Figure A.7). 33 In the

latter, we have also added splines on GDP in the models for the individual and neighborhood

propensity score. 34 Reassuringly, the marginal dose-response function µG(g) of network NAC

is similar to the one obtained with a cubic specification,. The shape of the marginal dose-response

function µZ(g) of direct NAC in Figures A.5 and A.7 remains similar to our baseline model (Fig-

ure 2), although we find a slight decrease in the optimal level of country NAC. As expected the

shape of µZ(g) becomes linear with a linear specification. As for the specification of the general-

ized propensity score models, we have included quadratic and cubic terms for the least balanced

33Thin plate regression splines are used as the smooth function for both generalized propensity scores. The
advantage of radial basis functions in multivariate smoothing is that they are rotationally invariant. The choice of the
number and the placement of knots is overcome by using penalized splines. Knots are first placed on data locations
(the default maximum number is 2000). and then a truncated eigen-decomposition is used to achieve a rank reduction
Wood (2003).

34Thin plate regression splines are also used as the smooth function for GDP.
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covariates (Figure A.8), the weighted degree (Figure A.9), country and time fixed effects (Fig-

ure A.10), and again splines on GDP (Figure A.7). Also in this case, results are qualitatively

unchanged.

In Appendix C, we also check whether our results are robust to sample composition. To

this purpose, we re-run our baseline model excluding the main global exporters and importers,

namely the United States, Germany, France, Italy, Spain, the Netherlands, Belgium, China,

Brazil, Canada, Japan and the UK. As expected, the results reported in Figure A.11 show a

reduced spillover effect (right-hand panel). This result suggests that these countries are indeed

those more responsible for spillover effects. This corroborates our main findings, whereby agri-

cultural policies implemented by large global players have a strong influence over the food secu-

rity of their trade partners and, accordingly, cannot be ignored when assessing the effectiveness

of policies.

4 Conclusions

Causal inference in observational studies has often neglected the presence of interference, which

has proven to be pervasive in many economic and social contexts. We contribute to filling this gap

in the literature by adapting previous work by Forastiere et al. (2021) to interventions defined on

a continuous scale and affected by interference, where the spillover exposure to the treatment of a

network connection is heterogenous and depends on the weight of the connection. As a result, we

obtain a generalized propensity score-base estimator which corrects for the bias resulting from

both treatment selection and network interference in the case of a continuous treatment. In this

continuous setting, we define new causal estimands: the treatment and spillover effect functions.

By balancing individual and network characteristics across agents under different levels of the

individual and network treatments, the joint propensity score-based estimator identifies these

causal effects.

Our paper aims at contributing to the study of treatments that are continuous in nature, in

situations where agents are exposed to one another with different intensities and spillover effects

may depend on the direction of the relationship considered, a setting that defines a large array

of existing policies and interventions. Using a weighted directed network, we model different

degrees of exposures to spillover effects. We consider spillover effects flowing in either direction

34



and we weight the exposure to a neighbor’s treatment by the connection intensity. We also pro-

pose different ways of normalizing the neighborhood treatment, leading to different weighting

functions representing the neighbors’ influence. For instance, both friendship and trade networks

are weighted and directed in nature. Peer influence between two individuals might depend on

the intensity of the relationship and a behavioral intervention received by one individual may

affect the behavior of those who consider the treated individual as a friend, but may not affect

the behavior of those who are considered as friends by the treated individual if friendship is not

reciprocated. Similarly, in a trade network, the spillover effect of policy interventions in one

country’s market on another country’s outcomes may depend on the trade intensity between the

two countries, either in absolute or relative terms, and whether it depends on the imports from

a treated country or the exports to a treated country depends on they type of policy intervention

and the type of outcome.

The empirical relevance of this work is illustrated through the assessment of the effects of

agricultural policies on food security. Here, we assume that the extent to which a country’s food

security is affected by agricultural policies implemented by its trade partners is proportional to the

value of the bilateral agri-food imports from these partners, normalized by the average world trade

value. Our results show that policy interventions do matter and they have a non-linear impact on

food security. Specifically, both a local excessive taxation and support for the primary sector

are detrimental for food availability. However, we find that the average direct effect estimated

neglecting interference underestimates the optimal level of producers’ support by roughly 30%.

Our method thus provides crucial insights to identify the additional efforts required to domestic

policies in order to be effective.

The correlation between local and foreign policies — as mediated by the trade network —

points to new directions of research and it may provide interesting insights to assess the indirect

effects of policy changes. This is, for instance, the case of the Single Farm Payment implemented

in 2003 under the Common Agricultural Policy of the European Union (EU), which consisted in

detaching farmers’ income payments from the production of specific crops to reduce the level of

EU intervention. It is also the case of the currently restrictions policy measures implemented by

some countries in order to ensure adequate domestic supplies and shield their consumers from

price volatility during the highly debated COVID-19 crisis. The framework provided in this
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paper might contribute to an assessment of the indirect consequences of these policies on partner

countries.
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Appendix A: Figures and Tables

Figure A.1: Map of the World. Countries included in the sample are indicated by the color grey.
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Figure A.2: NAC values in OECD (red) and Non-OECD (blue) countries from 1990 to 2010
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Figure A.3: Average dose-response function µ(z,g) of direct NAC and network NAC on food
utilization (log scale)
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Figure A.4: Marginal dose-response function µZ(z) of direct NAC (left) and marginal
dose-response function µG(g) of network NAC (right) on food utilization (log scale) with
neighborhood-level covariates
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Variable Mean St. Dev. Max Min

Outcomes
food availability 2,772.66 453.82 3,522 2,046
food utilization 36.08 22.15 79.00 10.50

Covariates

real pc GDP 13,883.05 18,126.58 91,617.28 302.13
pc arable land 0.32 0.39 2.81 0.03
population (/100) 680,600.84 1,585,192.15 12,309,806.91 3,174.14
agriculture productivity 113.28 15.97 180.44 83.47
food import/total exports 0.13 0.18 1.94 0.01
net exports 1.66 2.38 24.61 0.00
positive deviation food price 0.01 0.03 0.15 0.00
negative deviation food price 0.05 0.04 0.12 0.00
food price volatility 0.01 0.00 0.02 0.00
food crisis 0.10 0.29 1.00 0.00

Treatment NAC (Z) 1.14 0.26 2.21 0.77
Network Trade value 0.92 1.50 10.27 0.00

Table A.2: Summary statistics of outcomes, covariates, treatment and network variables

4



Country Mean St. Dev. Max Min Country Mean St. Dev. Max Min
ARG 0.87 0.11 1.00 0.70 KEN 1.01 0.09 1.16 0.69
AUS 1.02 0.02 1.06 1.00 KOR 2.28 0.35 2.78 1.52
AUT 1.42 0.23 1.82 1.07 LKA 1.03 0.11 1.19 0.85
BEL 1.30 0.12 1.54 1.10 LTU 1.16 0.26 1.65 0.55
BEN 0.99 0.02 1.01 0.93 LVA 1.18 0.27 1.73 0.55
BFA 0.98 0.03 1.02 0.90 MAR 1.65 0.15 1.98 1.45
BGD 0.93 0.12 1.06 0.63 MDG 1.00 0.10 1.24 0.90
BGR 0.95 0.14 1.18 0.64 MEX 1.14 0.13 1.41 0.85
BRA 1.01 0.09 1.11 0.80 MLI 0.98 0.02 1.02 0.94
CAN 1.21 0.09 1.43 1.08 MOZ 1.04 0.06 1.24 0.95
CHE 2.77 0.83 4.32 1.48 MYS 0.99 0.05 1.06 0.87
CHL 1.07 0.03 1.10 1.01 NGA 1.00 0.08 1.22 0.87
CHN 1.03 0.13 1.27 0.71 NIC 0.90 0.08 1.05 0.73
CIV 0.76 0.05 0.82 0.68 NLD 1.39 0.17 1.62 1.08
CMR 0.99 0.01 1.01 0.96 NOR 2.68 0.61 3.67 1.63
COL 1.17 0.10 1.34 0.96 NZL 1.02 0.01 1.06 1.00
CZE 1.21 0.12 1.48 1.07 PAK 0.96 0.08 1.12 0.78
DEU 1.39 0.20 1.79 1.07 PHL 1.19 0.14 1.41 0.87
DNK 1.34 0.18 1.70 1.06 POL 1.18 0.14 1.60 0.98
DOM 1.07 0.15 1.43 0.76 PRT 1.27 0.11 1.44 1.08
ECU 0.93 0.14 1.22 0.70 RUS 1.14 0.19 1.42 0.55
EGY 0.97 0.07 1.10 0.84 SDN 0.82 0.29 1.47 0.31
ESP 1.28 0.14 1.56 1.08 SEN 0.98 0.12 1.23 0.83
EST 1.10 0.18 1.41 0.62 SVK 1.24 0.12 1.43 1.07
ETH 0.86 0.19 1.27 0.50 SVN 1.56 0.29 2.06 1.09
FIN 1.58 0.47 2.54 1.07 SWE 1.46 0.30 2.13 1.07
FRA 1.37 0.22 1.88 1.06 TCD 0.99 0.01 1.01 0.96
GBR 1.42 0.21 1.88 1.09 TGO 0.98 0.02 1.00 0.93
GHA 0.98 0.03 1.05 0.92 THA 1.00 0.06 1.14 0.90
HUN 1.20 0.12 1.45 1.07 TUR 1.25 0.11 1.43 1.01
IDN 1.01 0.11 1.20 0.78 TZA 0.85 0.15 1.12 0.50
IND 1.08 0.11 1.26 0.88 UGA 0.96 0.08 1.02 0.76
IRL 1.57 0.26 2.05 1.08 UKR 0.93 0.15 1.13 0.54
ISL 2.76 0.86 4.94 1.62 USA 1.12 0.04 1.18 1.04
ITA 1.29 0.15 1.57 1.07 ZAF 1.05 0.07 1.21 0.93
JPN 2.08 0.25 2.72 1.68 ZMB 0.94 0.00 0.94 0.94

VNM 1.13 0.15 1.32 0.88
Notes: Country names are denoted using ISO3 Code.

Table A.3: NAC distribution by country
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(1) (2)
Food Availability Food Availability
(w/o interference) (with interference)

z 2.042∗∗ (0.813) 0.523 (0.664)
z2 −0.970 (0.591) 0.057 (0.486)
z3 0.095 (0.136) −0.087 (0.113)
φ(z;Xz

i ) −0.246∗∗∗ (0.078) −0.132∗∗ (0.061)
φ(z;Xz

i )
2 0.046 (0.046) 0.039 (0.036)

φ(z;Xz
i )

3 −0.010 (0.008) −0.006 (0.007)
z∗φ(z;Xz

i ) 0.145∗∗∗ (0.019) 0.028∗ (0.016)
g 0.107∗∗∗ (0.028)
g2 −0.021∗∗∗ (0.006)
g3 0.002∗∗∗ (0.0005)
λ (g;z,Xg

i ) 0.265 (0.772))
λ (g;z,Xg

i )
2 −1.181 (3.792)

λ (g;z,Xg
i )

3 −3.095 (5.902)
g∗λ (g;z,Xg

i ) 0.192∗∗∗ (0.047)
z∗g −0.036∗∗∗ (0.013)
Constant 6.834∗∗∗ (0.342) 7.545∗∗∗ (0.281)

Observations 930 930
R2 0.358 0.617
Adjusted R2 0.353 0.610
Residual Std. Error 0.134 (df = 922) 0.104 (df = 914)
F Statistic 73.333∗∗∗ (df = 7; 922)98.015∗∗∗ (df = 15; 914)

Notes: Significance levels: * p< 0.1; ** p<0.05; *** p<0.01.

Table A.4: Outcome models
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(1)
Food Availability

z 1.338∗ (0.718)
z2 −0.560 (0.525)
z3 0.032 (0.122)
φ(z;Xz

i ) −0.134∗∗ (0.064)
φ(z;Xz

i )
2 −0.031 (0.038)

φ(z;Xz
i )

3 0.006 (0.007)
z∗φ(z;Xz

i ) 0.123∗∗∗ (0.018)
g 0.187∗∗∗ (0.023)
g2 −0.025∗∗∗ (0.005)
g3 0.002∗∗∗ (0.0004)
λ (g;z,Xg

i ) −0.061 (0.126)
λ (g;z,Xg

i )
2 0.051 (0.099)

λ (g;z,Xg
i )

3 −0.019 (0.025)
g∗λ (g;z,Xg

i ) 0.007 (0.007)
z∗g −0.068∗∗∗ (0.014)
Constant 7.174∗∗∗ (0.311)

Observations 930
R2 0.542
Adjusted R2 0.535
Residual Std. Error 0.113 (df = 914)
F Statistic 72.185∗∗∗ (df = 15; 914)

Notes: Significance levels: * p< 0.1; ** p<0.05; *** p<0.01.

Table A.5: Outcome model with neighborhood-level covariates
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(1) (2) (3) (4)
Food Utilization Food Utilization Food Utilization Food Utilization

(w/o interference) (with interference) (with neighborhood-level (excluding main
covariates) exp imp countries)

z −4.768 (2.975) 1.119 (2.428) −1.285 (2.479) −2.305 (2.620)
z2 2.154 (2.193) −1.858 (1.807) 0.088 (1.844) 1.031 (1.965)
z3 −0.107 (0.510) 0.670 (0.424) 0.202 (0.432) −0.070 (0.462)
φ(z;Xz

i ) 0.428 (0.285) 0.026 (0.222) 0.111 (0.224) 0.563∗∗ (0.255)
φ(z;Xz

i )
2 0.092 (0.176) 0.263∗ (0.136) 0.304∗∗ (0.138) 0.214 (0.167)

φ(z;Xz
i )

3 0.015 (0.033) −0.035 (0.026) −0.039 (0.026) −0.033 (0.033)
z∗φ(z;Xz

i ) −0.795∗∗∗ (0.074) −0.504∗∗∗ (0.063) −0.671∗∗∗ (0.065) −0.865∗∗∗ (0.075)
g −0.810∗∗∗ (0.098) −0.957∗∗∗ (0.088) −0.207 (0.154)
g2 0.149∗∗∗ (0.025) 0.135∗∗∗ (0.020) −0.068 (0.048)
g3 −0.012∗∗∗ (0.002) −0.010∗∗∗ (0.002) 0.001 (0.007)
λ (g;z,Xg

i ) −4.660∗ (2.680) 0.125 (0.305) −0.324 (1.439)
λ (g;z,Xg

i )
2 37.926∗∗∗ (14.551) 0.063 (0.231) 8.812∗∗ (4.342)

λ (g;z,Xg
i )

3 −62.926∗∗∗ (24.362) −0.030 (0.054) −12.310∗∗∗ (4.173)
g∗λ (g;z,Xg

i ) −0.376∗∗ (0.172) −0.010 (0.020) −0.822∗∗∗ (0.123
z∗g 0.225∗∗∗ (0.046) 0.321∗∗∗ (0.046) 0.442∗∗∗ (0.091)
Constant 6.390∗∗∗ (1.235) 3.813∗∗∗ (1.023) 4.772∗∗∗ (1.044) 4.785∗∗∗ (1.093)

Observations 952 952 952 786
R2 0.442 0.673 0.665 0.564
Adjusted R2 0.438 0.668 0.650 0.555
Residual Std. Error 0.501 (df = 944) 0.385 (df = 936) 0.395 (df = 936) 0.387 (df = 770)
F Statistic 106.934∗∗∗ (df = 7; 944)128.644∗∗∗ (df = 15; 936) 118.692∗∗∗ (df = 15; 936) 66.375∗∗∗ (df = 15; 770)

Notes: Significance levels: * p< 0.1; ** p<0.05; *** p<0.01.

Table A.6: Food utilization outcome models
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Appendix B: Balance Check

In Section 2.6 we described the balancing property of the propensity scores; that is, the fact that

the covariates Xi are balanced across levels of the joint treatment within strata defined by the

values of both propensity scores φ(z;Xi) and λ (z;g,Xi). As long as the estimated propensity

scores satisfy this property, the proposed adjustment method ensures unbiased estimates of the

causal estimands of interest. Therefore, this balancing property can be employed to empirically

assess the adequacy of the estimated propensity scores.

With a binary treatment, this balance check is usually conducted by comparing the distribu-

tion of covariates between treated and control units within strata defined by the propensity scores

(Rosenbaum & Rubin, 1983). With a continuous treatment, Hirano & Imbens (2004) propose

a ‘blocking on the GPS’ approach, which first divides the levels of the treatment into intervals

and, within these, stratifies individuals into groups according to the median values (of the cor-

responding interval) of the generalized propensity score. Then, it is possible to test whether the

observed covariates are balanced within these GPS strata. Unfortunately, in our framework with

interference each unit is affected by two different continuous treatments and, to verify the balanc-

ing property Xi ⊥⊥ 1(Zi = z,Gi = g) | φ(z;Xi),λ (g;z,Xi), we would need to stratify individuals

by the joint values of their individual and neighborhood treatment first and then by their joint

values of the individual and neighborhood propensity scores. Such approach seems unfeasible.

However, we report standardized mean differences in covariates and the corresponding t value in

4 different intervals defined by the individual treatment (Table A.7) and the neighborhood treat-

ment (Table A.8). We can see a substantial imbalance for both the individual treatment and the

neighborhood treatment for most covariates, in particular GDP and high income countries. To

further assess whether the joint adjustment for the propensity scores is able to improve covariate

balance, instead of using the ‘blocking on the GPS’ approach, whose extension to our framework

seems infeasible, we pursue a model-based approach.

In fact, an alternative approach for balance check with a continuous treatment and without in-

terference is a ‘model comparison’ approach, proposed by Flores et al. (2012). The idea is to use

a Likelihood Ratio Test (LRT) to compare an unrestricted model for the treatment that includes

all covariates and the GPS with a restricted model that sets the coefficients of all covariates equal

to zero. If the GPS sufficiently balances the covariates, then the covariates should have little.
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Covariates Group 1 Group 2 Group 3 Group 4
SMD T-value SMD T-value SMD T-value SMD T-value

real pc GDP 1.508 13.364 0.815 6.765 -0.423 -3.451 -1.904 -17.888
pc arable land -0.007 -0.106 -0.324 -4.710 0.125 1.806 0.206 2.969
population (/100) -0.128 -1.382 0.362 3.925 -0.413 -4.493 0.180 1.944
agriculture productivity 1.203 1.049 -2.093 -1.824 -3.638 -3.187 4.535 3.979
food import/total exports -0.495 -7.427 -0.222 -3.250 0.244 3.579 0.474 7.083
net exports -0.659 -3.172 -0.603 -2.894 0.366 1.752 0.897 4.331
positive deviation food price 0.002 0.767 0.002 0.610 -0.007 -2.557 0.003 1.174
negative deviation food price -0.003 -1.138 0.002 0.733 -0.004 -1.390 0.005 1.799
food price volatility -0.001 -2.702 0.001 2.333 -0.001 -1.782 0.001 2.156
food crisis -0.050 -2.242 0.047 2.116 -0.056 -2.502 0.059 2.635
Asia -0.098 -3.369 -0.008 -0.262 -0.058 -1.986 0.165 5.697
Latin America -0.035 -1.280 0.050 1.803 -0.156 -5.729 0.142 5.193
EU transition economies 0.016 1.046 0.016 1.031 -0.041 -2.737 0.010 0.653
High income countries 0.403 12.474 0.173 5.008 0.037 1.051 -0.614 -21.478
Observations 930

Table A.7: Interval-based covariate balance check by levels of Z without adjusting for GPS

Covariates Group 1 Group 2 Group 3 Group 4
SMD T-value SMD T-value SMD T-value SMD T-value

real pc GDP 1.977 18.872 0.511 4.177 -0.433 -3.540 -2.059 -19.939
pc arable land -0.147 -2.129 0.275 3.992 0.277 4.028 -0.405 -5.940
population (/100) 0.589 6.487 0.099 1.065 -0.340 -3.691 -0.349 -3.778
agriculture productivity 2.034 1.775 3.415 2.985 -0.133 -0.116 -5.320 -4.684
food import/total exports -1.026 -17.190 -0.449 -6.696 0.683 10.543 0.793 12.488
net exports 1.153 5.611 1.185 5.763 -0.298 -1.425 -2.044 -10.307
positive deviation food price 0.002 0.848 -0.002 -0.809 0.001 0.289 -0.001 -0.330
negative deviation food price 0.000 0.096 0.003 1.185 -0.001 -0.495 -0.002 -0.784
food price volatility 0.000 0.142 0.000 0.291 0.000 -0.256 0.000 -0.177
food crisis 0.019 0.848 -0.005 -0.205 -0.004 -0.180 -0.010 -0.463
Asia 0.096 3.306 -0.013 -0.458 -0.127 -4.368 0.044 1.498
Latin America 0.033 1.209 0.044 1.594 -0.081 -2.950 0.004 0.139
EU transition economies 0.016 1.046 -0.002 -0.102 0.033 2.182 -0.048 -3.140
High income countries 0.363 11.060 0.110 3.153 -0.061 -1.740 -0.413 -12.808
Z 0.166 8.861 -0.080 -4.130 -0.006 -0.327 -0.080 -4.139
Observations 930

Table A.8: Interval-based covariate balance check by levels of G without adjusting for GPS

explanatory power conditional on the GPS. A similar model comparison approach consists

of regressing each covariate on the treatment variable and comparing the significance of the

coefficients for specifications with and without conditioning on the GPS (Kluve et al., 2012).
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w/o GPS w/ GPS

Z G Z G

Coeff T-value Coeff T-value Coeff T-value Coeff T-value Chisq LRT
real pc GDP 1.793 19.450 0.299 18.858 1.680 19.003 0.373 18.624 514.440
pc arable land -0.726 -5.669 0.039 1.777 -0.452 -3.480 0.208 7.061 62.665
population (/100) -0.219 -1.702 0.104 4.682 -0.308 -2.267 0.114 3.711 19.650
agriculture productivity -0.346 -2.682 0.079 3.562 -0.470 -3.484 0.101 3.297 23.961
food import/total exports -0.810 -6.788 -0.202 -9.849 -0.830 -6.809 -0.316 -11.436 158.503
net exports -0.940 -7.586 0.167 7.813 -0.993 -7.621 0.199 6.732 103.100
positive deviation food price 0.004 0.032 0.000 0.011 -0.056 -0.405 -0.008 -0.258 0.225
negative deviation food price -0.129 -0.990 0.003 0.156 -0.184 -1.330 -0.017 -0.535 2.020
food price volatility -0.153 -1.172 -0.002 -0.086 -0.292 -2.127 -0.031 -0.993 5.390
food crisis -0.170 -1.305 0.002 0.089 -0.266 -1.929 -0.017 -0.536 3.963
Asia -0.923 -5.481 -0.038 -1.318 -0.859 -4.846 0.013 0.318 23.671
Latin America -0.738 -4.619 0.011 0.387 -0.748 -4.414 0.043 1.133 21.156
EU transition economies -0.088 -0.991 0.022 1.433 -0.066 -0.702 0.025 1.185 1.983
High income countries 3.174 21.038 0.348 13.398 3.058 19.724 0.415 11.897 411.774

Notes: Columns 1-4 report the standardized coefficient and t value for Z and G when we regress each covariate on Z and G only, while columns 5-8 report
the standardized coefficient and t value for Z and G when we regress each covariate on Z and G along with the individual and neighborhood propensity scores.
Column 9 reports the Chi-Squared test-statistic of the LRT comparing the latter model with treatments and the two GPS against a model with only the two GPS.

Table A.9: Model-based balance check: linear GPS and outcome model with cubic terms.

We extend the latter model comparison approach to the case with interference. We first pro-

pose a joint balance check of the balancing property of both the individual and neighborhood

propensity scores. This is done by regressing each covariate on the two treatments with and

without the generalized propensity scores and then comparing the coefficients of the treatments.

Furthermore, to assess the residual explanatory power of the treatments once we adjust for the

two GPS, we propose the use of a likelihood ratio test that compares a model for each covariate

with both the two treatments and the two GPS against a model without the two treatments. If

the LRT cannot reject the null, the full model with the individual and neighborhood treatments is

not better than the restricted one with only the two GPS. Therefore, we conclude that covariates

are sufficiently balanced by the GPS. It is worth stressing that the adjustment for the generalized

propensity scores in the models for covariates must be done in the same way as in the outcome

model, including the same polynomial terms. In Table A.9 we report the results of both ap-

proaches applied to the whole trade network dataset on agricultural policies, with a linear model

for the individual and neighborhood propensity score and cubic polynomials for the GPS in the

outcome model as in Section 3.2.1. We can see that both the comparison between the coefficients
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w/o GPS w/ GPS

Z G Z G

Coeff T-value Coeff T-value Coeff T-value Coeff T-value Chisq LRT
real pc GDP 1.793 19.450 0.299 18.858 0.000 0.773 0.000 0.684 0.000
pc arable land -0.726 -5.669 0.039 1.777 -0.000 -1.394 -0.000 -1.490 0.000
population (/100) -0.219 -1.702 0.104 4.682 0.000 0.027 0.000 0.021 0.000
agriculture productivity -0.346 -2.682 0.079 3.562 0.000 0.008 -0.000 -0.007 0.000
food import/total exports -0.810 -6.788 -0.202 -9.849 -0.000 -0.510 -0.000 -0.359 0.000
net exports -0.940 -7.586 0.167 7.813 -0.000 -0.080 -0.000 -0.154 0.000
positive deviation food price 0.004 0.032 0.000 0.011 -0.000 -0.687 -0.000 -0.753 0.000
negative deviation food price -0.129 -0.990 0.003 0.156 0.000 0.558 0.000 0.565 0.000
food price volatility -0.153 -1.172 -0.002 -0.086 -0.000 -0.296 -0.000 -0.285 0.000
food crisis -0.170 -1.305 0.002 0.089 -0.000 -0.610 -0.000 -0.430 0.000
Asia -0.923 -5.481 -0.038 -1.318 -0.000 -0.731 -0.000 -0.752 0.000
Latin America -0.738 -4.619 0.011 0.387 -0.000 -1.111 -0.000 -1.072 0.000
EU transition economies -0.088 -0.991 0.022 1.433 -0.000 -0.185 -0.000 -0.336 0.000
High income countries 3.174 21.038 0.348 13.398 0.000 3.501 0.000 3.240 0.000

Notes: Columns 1-4 report the standardized coefficient and t value for Z and G when we regress each covariate on Z and G only, while columns 5-8 report
the standardized coefficient and t value for Z and G when we regress each covariate on Z and G along with the individual and neighborhood propensity scores.
Column 9 reports the Chi-Squared test-statistic of the LRT comparing the latter model with treatments and the two GPS against a model with only the two GPS.

Table A.10: Model-based balance check: GPS model with splines on GDP and outcome model with splines.

and the LRT show that the adjustment for the individual and neighborhood propensity scores is

not able to balance some covariates, with GDP being the most imbalanced one. In Table A.10

we report the results of our model-based balance check when we estimate the individual and

propensity score models with penalized thin plate splines for GDP and the outcome model with

splines for both GPS and their interactions, as did in the robustness check reported in Figure

A.7, Section 3.4. Here, we can see that the use of semi-parametric models seem to yield a better

covariate balance, in that after adjusting for the generalized propensity scores the coefficients of

the individual and neighborhood treatment are not longer significant and the LRT cannot reject

the null that the model with the treatments and both GPS is equivalent to the one with the GPS

only. 35

Finally, for the sake of completeness, we conducted separate balance checks for the individ-

ual and neighborhood treatment using the ‘blocking on GPS’ approach Hirano & Imbens (2004).

We evaluated the balance of covariates separately for the individual treatment given the individ-

35It is worth noting that the use of splines for both generalized propensity scores, although penalized, increases
the degrees of freedom of χ2 distribution, and this increased complexity makes it more difficult for the LRT to reject
the null.
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ual propensity score, i.e., Xi ⊥⊥ 1(Zi = z) | φ(z;Xi), and for the neighborhood treatment given

the neighborhood propensity score, i.e.,Xi ⊥⊥ 1(Gi = g) | λ (g;Zi,Xi). Results are reported in

Tables A.11 and A.12 for a linear model on covariates for both the individual and neighborhood

propensity scores and in Tables A.13 and A.14 for a model with splines on GDP for both GPS.

Compared to the imbalance seen without GPS adjustment in Tables A.7 and A.8, adjusting for

each corresponding propensity score using a ‘blocking on the GPS’ approach slightly improves

covariate balance, with the semi-parametric model for the GPS with splines for GDP perform-

ing somewhat better, improving the balance for GDP and high income countries. However, by

separately assessing the balancing property of the individual and neighborhood propensity scores

we do not assess the joint balancing property that would ensure the unbiasedness of the gener-

alized propensity score-based estimator proposed here. In addition, a model-based adjustment

for the generalized propensity scores, as the one proposed here, may rely on a model-based un-

confoundedness assumption that the expectation of the potential outcomes is independent of the

joint treatment conditional on a function of the generalized propensity scores (e.g., polynomials),

which is a weaker than the unconfoundedness of the joint treatment conditional on the generalized

propensity scores (Proposition 1). Under Assumption 3, this model-based unconfoundedness can

be tested by checking the balancing property of the generalized propensity scores using a model-

based approach (Flores et al., 2012). Table A.10 shows an improvement in the covariate balance

thanks to the use of a model-based balance check and a semi-parametric adjustment for the indi-

vidual and neighborhood propensity scores. This result seems to indicate that the estimates based

on the use of semi-parametric models are more credible. However, the dose-response functions

estimated using these semi-parametric models and reported in Figure A.7 are similar to the ones

reported in Figure 2 in the main results section (Section 3.3), suggesting some degree of robust-

ness to model misspecification.
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Covariates Group 1 Group 2 Group 3 Group 4
SMD T-value SMD T-value SMD T-value SMD T-value

real pc GDP 0.913 9.792 0.226 2.612 -0.551 -4.568 -0.330 -2.413
pc arable land 0.185 2.145 -0.362 -4.772 0.090 1.284 -0.062 -0.610
population (/100) -0.425 -4.096 0.488 5.242 -0.338 -3.551 -0.094 -0.679
agriculture productivity 1.710 1.277 -2.960 -2.429 -4.535 -3.762 3.647 2.086
food import/total exports -0.176 -2.720 -0.020 -0.312 0.238 3.377 0.022 0.219
net exports -1.155 -4.403 -1.085 -4.636 0.416 1.767 0.759 2.388
positive deviation food price 0.004 1.151 0.001 0.497 -0.009 -3.263 0.004 0.980
negative deviation food price -0.002 -0.502 0.003 0.868 -0.007 -2.454 0.005 1.213
food price volatility 0.000 -0.580 0.001 2.153 -0.001 -3.216 0.001 1.251
food crisis -0.007 -0.292 0.050 2.117 -0.094 -3.946 0.060 1.797
Asia -0.066 -2.148 0.017 0.632 -0.041 -1.425 0.005 0.106
Latin America -0.071 -2.212 0.056 1.988 -0.072 -2.781 0.004 0.107
EU transition economies -0.007 -0.347 0.022 1.407 -0.016 -1.160 -0.066 -2.827
High income countries 0.336 9.539 0.030 1.142 -0.099 -3.125 -0.001 -0.033
Observations 930

Table A.11: Interval-based covariate balance check by levels of Z adjusting for the individual propensity
score estimated using a linear model on all covariates

Covariates Group 1 Group 2 Group 3 Group 4
SMD T-value SMD T-value SMD T-value SMD T-value

real pc GDP 1.681 16.272 0.027 0.278 -0.863 -6.766 -0.822 -6.182
pc arable land -0.213 -2.402 0.333 4.582 0.091 1.228 -0.268 -2.739
population (/100) 0.500 4.433 -0.030 -0.303 -0.082 -0.867 -0.591 -4.417
agriculture productivity 2.112 1.468 2.579 2.066 -0.662 -0.539 -4.395 -2.655
food import/total exports -0.778 -12.447 -0.328 -5.040 0.706 10.262 0.873 9.209
net exports 1.061 3.840 1.277 5.477 -0.415 -1.694 -2.509 -8.446
positive deviation food price 0.003 0.949 -0.002 -0.657 0.001 0.255 -0.002 -0.548
negative deviation food price -0.003 -0.962 0.004 1.289 -0.001 -0.468 -0.005 -1.156
food price volatility 0.000 -0.534 0.000 0.206 0.000 -0.322 0.000 -0.577
food crisis 0.005 0.193 -0.001 -0.049 0.002 0.068 -0.028 -0.835
Asia 0.143 4.294 0.029 1.025 -0.038 -1.553 -0.288 -6.759
Latin America 0.072 2.233 0.056 1.938 -0.025 -0.908 -0.085 -2.109
EU transition economies 0.029 1.609 0.016 1.008 0.022 1.327 -0.036 -1.821
High income countries 0.280 7.203 -0.028 -0.899 -0.223 -6.533 0.068 1.809
z 0.149 6.374 -0.136 -6.794 -0.029 -1.380 0.048 1.842
Observations 930

Table A.12: Interval-based covariate balance check by levels of G adjusting for the neighborhood propen-
sity score estimated using a linear model on all covariates
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Covariates Group 1 Group 2 Group 3 Group 4
SMD T-value SMD T-value SMD T-value SMD T-value

real pc GDP 0.933 8.896 0.128 1.302 -0.673 -5.145 -0.368 -2.921
pc arable land 0.199 2.263 -0.473 -6.112 0.085 1.187 -0.058 -0.606
population (/100) -0.493 -4.553 0.482 4.891 -0.261 -2.746 -0.078 -0.608
agriculture productivity 2.144 1.625 -2.946 -2.350 -6.235 -5.062 4.163 2.517
food import/total exports -0.166 -2.482 -0.006 -0.098 0.248 3.383 0.087 0.897
net exports -1.255 -4.705 -1.214 -5.027 0.417 1.712 0.696 2.259
positive deviation food price 0.005 1.501 0.002 0.534 -0.011 -3.784 0.004 1.042
negative deviation food price -0.001 -0.216 0.001 0.314 -0.008 -2.819 0.006 1.465
food price volatility 0.000 -0.517 0.001 1.535 -0.001 -3.492 0.001 1.535
food crisis -0.005 -0.196 0.038 1.555 -0.105 -4.262 0.058 1.830
Asia -0.065 -2.037 0.061 2.200 -0.029 -0.979 0.012 0.280
Latin America -0.093 -2.787 0.059 2.087 -0.074 -2.784 0.014 0.336
EU transition economies 0.022 1.236 0.023 1.386 -0.031 -2.056 -0.041 -1.841
High income countries 0.333 8.950 -0.018 -0.594 -0.093 -2.616 -0.061 -2.454
Observations 930

Table A.13: Interval-based covariate balance check by levels of Z adjusting for the individual propensity
score estimated with real pc GDP splines

Covariates Group 1 Group 2 Group 3 Group 4
SMD T-value SMD T-value SMD T-value SMD T-value

real pc GDP 1.695 15.506 0.055 0.599 -0.910 -6.737 -0.710 -5.614
pc arable land -0.084 -0.935 0.334 4.515 0.083 1.052 -0.225 -2.439
population (/100) 0.352 3.077 0.023 0.231 -0.103 -1.018 -0.746 -5.747
agriculture productivity 0.598 0.420 2.768 2.287 -1.387 -1.056 -5.141 -3.182
food import/total exports -0.847 -13.104 -0.316 -5.219 0.723 10.121 0.783 8.423
net exports 1.044 3.792 1.219 5.326 -0.448 -1.699 -2.636 -9.765
positive deviation food price 0.004 1.150 -0.001 -0.418 0.001 0.462 -0.002 -0.462
negative deviation food price -0.001 -0.383 0.004 1.290 -0.001 -0.335 -0.003 -0.871
food price volatility 0.000 -0.197 0.000 0.250 0.000 0.062 0.000 -0.243
food crisis 0.017 0.632 -0.008 -0.335 0.000 0.017 -0.017 -0.538
Asia 0.031 0.887 0.027 0.934 -0.069 -2.554 -0.289 -6.769
Latin America 0.007 0.213 0.044 1.519 -0.034 -1.123 -0.116 -2.871
EU transition economies 0.029 1.618 0.005 0.298 0.009 0.447 0.007 0.383
High income countries 0.306 7.633 0.001 0.019 -0.191 -4.922 0.059 1.610
z 0.162 6.987 -0.147 -7.640 -0.033 -1.465 0.075 2.940
Observations 930

Table A.14: Interval-based covariate balance check by levels of G adjusting for the individual propensity
score estimated with real pc GDP splines
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Appendix C: Additional Robustness Checks
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Figure A.5: Quadratic outcome model: Marginal dose-response function µZ(g) of direct NAC
(left-hand) and marginal dose-response function µG(g) of network NAC (right-hand) on food
availability (log scale) with interference
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Figure A.6: Linear outcome model: Marginal dose-response function µZ(g) of direct NAC (left-
hand) and marginal dose-response function µG(g) of network NAC (right-hand) on food avail-
ability (log scale) with interference
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Figure A.7: Outcome model and GPS models with splines: Marginal dose-response function
µZ(g) of direct NAC (left-hand) and marginal dose-response function µG(g) of network NAC
(right-hand) on food availability (log scale) with interference
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Figure A.8: GPS model with cubic and quadratic terms: Marginal dose-response function µZ(g)
of direct NAC (left-hand) and marginal dose-response function µG(g) of network NAC (right-
hand) on food availability (log scale) with interference
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Figure A.9: GPS model with weighted degree: Marginal dose-response function µZ(g) of direct
NAC (left-hand) and marginal dose-response function µG(g) of network NAC (right-hand) on
food availability (log scale) with interference
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Figure A.10: Fixed effects: Marginal dose-response function µZ(g) of direct NAC (left-hand)
and marginal dose-response function µG(g) of network NAC (right-hand) on food availability
(log scale) with interference
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Figure A.11: Excluding the main global exporters and importers: Marginal dose-response func-
tion µZ(g) of direct NAC (left-hand) and marginal dose-response function µG(g) of network
NAC (right-hand) on food availability (log scale) with interference
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