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Motivation

A growing literature has sparked on various aspects of networks and their
role in explaining various social and economic phenomena among economic
theorists, empirical researchers and, more recently, econometricians.

The integration of models of social interactions within economic theory is
an active area of research (Benhabib et al., 2011, Jackson et al. 2017, de
Paula et al. 2021, Hsieh et al. 2021).

Observation that many individual outcomes vary much more between social
groups than within them.
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Motivation

Application contexts:

Social interactions: e.g., consumption, academic achievement, unem-
ployment, crime, . . . ;

Strategic interactions: e.g., finance, production, IO, international trade,
. . . ;

Spatial externalities: e.g., agglomeration effects, agriculture, . . . ;

Neighborhood effects: e.g., new economic geography, housing market,
. . . .

V. Leone Sciabolazza (DISAE, Parthenope) Economics of Networks 2021 3 / 168



Motivation

Theory:
Models of social interactions are widely used

Empirics:
Convincing tests of such models are still quite limited. This is because:

Appropriate data sets difficult to find;

Identification and measure of such peer effects is a quite difficult exercise;

Econometrics of networks is lagging behind: the use of panel data economet-
rics and spatial econometrics is not trivial.

Methodological tools:

Graph theory tools and spatial statistics techniques

Spectral analysis of matrices
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Motivation

There is substantial empirical evidence showing that peer effects matter in (among other
outcomes):

alcohol use (Kremer and Levy, 2008),

crime (Ludwig et al., 2001; Patacchini and Zenou, 2012; Damm and Dustmann,
2014),

education (Calvo-Armengol et al., 2009; Epple and Romano, 2011; Sacerdote,
2011),

environmentally friendly behavior (Brekke et al., 2010; Czajkowski et al., 2017),

obesity (Christakis and Fowler, 2007),

participation in extracurricular activities (Boucher, 2016),

performance in the workplace (Herbst and Mas, 2015),

political networks (Cohen et al., 2014, Battaglini et al. 2018, 2019, 2020)

risky behavior (Clark and Loheac, 2007; Hsieh and Lin, 2017),

smoking (Powell, Tauras, and Ross, 2005),

substance use (Lundborg, 2006), and

tax compliance and tax evasion (Fortin et al., 2007; Alm et al., 2017).
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Outline of the course

This course provides a selective overview on:

Centrality Measures

Modeling Peer Effects

Modeling Network formation
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Centrality Measures

Centrality is a key concept in network studies.

There are many different ways in which a node can be important to a struc-
ture.

Absolute measures: a node’s influence is evaluated on the sole basis
of the node’s structural characteristics in the network. E.g.: degree,
betweenness, closeness centrality (Freeman, 1979).

Relative measures: a node’s status is a function of the statuses of the
nodes to which it is connected. E.g.: eigenvector, Bonacich (1987),
Page Rank (Brin and Page, 1998) centrality.
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Centrality Measures: a review

Adjacency Matrix

Each network can be represented as an adjacency matrix G , where gi ,j = 1
if i is connected to j (i 6= j) and gi ,j = 0, otherwise.

1

2

3

4
5

6



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 1
0 0 1 0 1 0
0 0 1 1 0 1
0 0 1 0 1 0


‘

This formalization can be used to compute centrality measures.
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Centrality Measures: a review

Absolute measures: degree centrality

Degree centrality is the row/column sum of the adjacency matrix.

●1

2

3

4
5

6

d(G ) =



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 1
0 0 1 0 1 0
0 0 1 1 0 1
0 0 1 0 1 0





1
1
1
1
1
1

 =



1
2
4
2
3
2


‘
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Centrality Measures: a review

Relative measures: eigenvector centrality

Gould (1967): The connectedness of a vertex is not just how many other
vertices it is connected too, but also how connected those vertices are.

Eigenvector centrality requires to consider loops.

1

2

3

4
5

6

I+G =



1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 1 1
0 0 1 1 1 0
0 0 1 1 1 1
0 0 1 0 1 1


‘
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Centrality Measures: a review

Relative measures: eigenvector centrality
Remember that:

I + G is an n x n non-negative primitive matrix: e.g. all entries are
positive and (I + G )k is strictly positive.

by the Perron-Frobenius theorem, the largest eigenvalue of I + G is
positive and it has a unique eigenvector with all positive entries (this
will come in hand in a few moments).

the entry j in row i of (I + G )k gives all k length paths from i to j.
1

2

3

4
5

6

(I+G )2 =



2 2 1 0 0 0
2 3 2 1 1 1
1 2 5 3 4 3
0 1 3 3 3 2
0 1 4 3 4 3
0 1 3 2 3 3


‘

Note: values on the diagonal are also referred to as subgraph centrality (Estrada, Rodriguez-Velazquez, 2005).
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Centrality Measures: a review

Relative measures: eigenvector centrality
Let us rank agents: for each i multiply i ’s degree by the sum of the degrees
of all agent i ’s connections (including i) at any path length k (Gould, 1967).

1

2

3

4
5

6

(I+G )k→∞·d(G ) ∼=



5.880630e + 56
1.591056e + 57
3.716676e + 57
2.588712e + 57
3.287309e + 57
2.588712e + 57



This is awkward to read and difficult to interpret. Gould (1967) suggests to

normalize these values using the norm of the vector: (I+G)k→∞

||(I+G)k→∞||
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Centrality Measures: a review

Relative measures: eigenvector centrality

Following Gould (1967), we compute (I+G)k→∞

||(I+G)k→∞|| .

1

2

3

4
5

6

(I + G )k→∞

||(I + G )k→∞||
·d(G ) ∼=



0.09195198
0.24878406
0.58115487
0.40478177
0.51401731
0.40478177


This value is called Gould index of accessibility. It measures how accessible
is a vertex and how important are the vertices to which it is connected.

The Gould index is equal to the eigenvector associated to the largest eigen-
value of I + G (Perron-Frobenius Theorem).
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Centrality Measures: a review

Relative measures: eigenvector centrality

The Gould index is equal to eigenvector centrality.

●1

2

3

4

5

6

Degree centrality

●1

2

3

4
5

6

Eigenvector centrality

Note: 4 and 6 are more important than 2 even if they all have the same
degree centrality (they are closer to nodes with higher degree centrality).
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Centrality Measures: a review

Relative measures: Bonacich centrality

Bonacich centrality counts the number of paths connecting i to j at any k ∈ [0,∞].

∞∑
k=0

G k · 1

It assigns higher importance to paths for which k is lower: nodes further away are less
influential.

∞∑
k=0

(1

δ

)k
G k · 1 =

∞∑
k=0

φkG k · 1 ∼=


1.359068
1.795340
2.617634
1.987209
2.318410
1.987209


Note 1: φ = 0.25.
Note 2: We also refer to Katz-Bonacich centralities as parameter-dependent centrality measures.
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Centrality Measures: a review

Definition (Katz, 1953; Bonacich, 1987)

Given a vector u ∈ Rn
+, and φ ≥ 0 a small enough scalar, the vector of

Bonacich centralities of parameter φ in network G is defined as:

b(g , φ) =
∞∑
k=0

φkG ku = (I − φG )−1u
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Centrality Measures: a review

Relative measures: Bonacich centrality

Note that the definition relies on interesting properties of Taylor expansions:

When φ < 1, then
∑∞

k=0 φ
kG k · 1→ (I − φG )−1 · 1.

Note also that:

For (I − φG ) to be invertible, it is necessary to impose a condition on
φ, that is 1

δmin
< φ < 1

δmax
, where δmin and δmax are respectively the

smallest and largest eigenvalue of G .

If G is a stochastic matrix (row/column normalized), then δmin = −1
and δmax = 1, and −1 < φ < 1
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Centrality Measures: a review

Relative measures: Bonacich centrality

●1

2

3

4

5

6

Degree centrality

●1

2

3

4
5

6

Eigenvector centrality

●

●

●

1

2

3

4

5

6

Bonacich centrality

Bonacich centrality assigns more importance to node 2 than nodes 4 and 6.
This is because all nodes that want to reach 1, they must pass through 2.
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Centrality Measures: a review

Degree, eigenvector, and Bonacich centralities can be nested in a general
formula (Banerjee et al., 2014):

C (Gnorm, q,K ) =
[ K∑
k=1

(φGnorm)k
]
1 =

=


K = 1 and φ = 1 It is proportional to degree centrality.

K =∞ and φ < 1
δmax

It coincides with Bonacich centrality.

K →∞ and φ ≥ 1
δmax

It approaches eigenvector centrality.

Different values of K and φ reflect different diffusion processes. If network
externalities are local, then K = φ = 1. If network externalities are global,
then K →∞ and φ is alternatively higher or lower than 1

δmax
.
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Centrality Measures: a review
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Modeling Peer Effects

A taxonomy of peer effects models
An emerging literature shows that measures of centrality, which were introduced
as descriptive, have an interpretation within equilibrium models of behavior.

Most popular models are:

Local Average Model: individuals have a preference to conform to the aver-
age action of their neighbors in a social network (Patacchini et al., 2012).

Local Aggregate Model: individuals have a preference to conform to the sum
of actions of their neighbors in a social network (Ballester et al., 2006, Calvo-
Armengol et al., 2009).

Note: Bramoullé et al.(2009) provide conditions for identification in the local-average model, Liu et al.(2014) derive conditions
for identification in the local-aggregate model.
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Modeling Peer Effects

Local Aggregate Model:

A node’s outcome is influenced by the aggregate outcomes of their
neighbours.

Each individual i selects an effort yi ≥ 0 and obtains a payoff given by
the following utility function:

ui (y , g) = xiyi︸︷︷︸
benefits from own effort

− 1

2
y2
i︸︷︷︸

costs

+ φ

n∑
j=1

gi ,jyiyj︸ ︷︷ ︸
benefits from own and friends’ effort
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Modeling Peer Effects

Local Aggregate Model

Interpretation:

Individual outcomes results from both idiosyncratic characteristics (x) and
peer effects (

∑n
j=1 gi,jyiyj).

Payoffs are interdependent and agents choose their levels of activity simulta-
neously.

Result:
If φ µ1(G ) < 1, where µ1(G ) is the spectral radius of G , there is a unique Nash
equilibrium of the peer effect game y∗i ,where each individual provides effort propor-
tional to that of her/his reference group and to her/his idiosyncratic characteristics.

y∗i = φ

N∑
j=1

gi,jy
∗
j + xi (1)
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Modeling Peer Effects

Local Average Model

A node’s outcome is influenced by the average outcome of its neighbours.

Each individual i selects an effort yi ≥ 0 and obtains a payoff given by the
following utility function:

ui (y , g) = xiyi︸︷︷︸
benefits from own effort

− 1

2
y2
i︸︷︷︸

costs

− d

2
(yi − ȳi )︸ ︷︷ ︸

benefits from own and friends’ effort

Where d > 0 and ȳ =
∑n

j=1 gi,jyj
gi,j

.
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Modeling Peer Effects

Local Average Model

Interpretation:

Individual outcomes results from both idiosyncratic characteristics (x) and
peer effects (yi − ȳi ).

Payoffs are interdependent and agents choose their levels of activity simulta-
neously.

Result:
If δ µ1(G ) < 1, where µ1(G ) is the spectral radius of G , and δ = d

1+d , there is a
unique Nash equilibrium of the peer effect game y∗i ,where each individual provides
effort proportional to that of her/his reference group and to her/his idiosyncratic
characteristics.

y∗i = δ

N∑
j=1

gi,jy
∗
j + (1− δ)xi
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Modeling Peer Effects

The key difference between the Local Average and the Local Aggregate
model is that (Ushchev et al., 2020):

The Local Aggregate model highlights the role of knowledge spillovers
on outcomes (Ballester et al., 2006,2010; Bramoullé et al., 2014; De
Marti and Zenou, 2015).

The Local Average model aims to capture the role of social norms, such
as conformist behavior or peer pressure, on outcomes (Patacchini and
Zenou, 2012; Liu et al., 2014; Blume et al., 2015; Topa and Zenou,
2015; Boucher, 2016).
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Modeling Peer Effects

Each model entails a different approach to policy making. For instance:

how does adding a new link to the existing network affect the equilibrium
efforts?

In the Local Aggregate model, all agents will change the level of effort.

In the Local Average model, the agents will change the level of effort
only when the difference between the individual effort and the group
average is changed.

If the planner wants to reduce total crime, which link should she remove
from the network?
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Modeling Peer Effects

In this class of local aggregate models each agent can leverage global network ef-
fects as captured by Bonacich centrality: complete information about the network
topology.

Alternative:

A node’s outcome is influenced by the number of neighbours, each agent
knows how many neighbors she herself has (i.e. her degree centrality) and
the degree distribution: incomplete information about the network topology.

Each individual i selects an effort yi ≥ 0 and obtains a payoff given by the
following utility function:

ui (y) = f (yi + φ

k∑
j=1

yj)︸ ︷︷ ︸
benefits from own and friends’ effort

− c(yi )︸︷︷︸
costs

Note: This is a model of conformist society. All agents choose an optimal level of effort, which is equal to the weighted mean of
individual effort, whereby the weights are proportional to the degree of the agents in the network. This is essentially the definition
of best-shot public games (Hirshleifer, 1983): when φ increases, the impact of the social norm on own effort increases.
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Modeling Peer Effects

Interpretation:
The parameter φ ∈ R determines the nature of the externality across players’
actions:

φ < 0: information sharing as a local public good (Bramoulle’ et al., 2007),
co-ordination problems (Jackson and Wolinsky, 1996).

φ > 0: vaccination (Galeotti et al., 2010), collaboration among firms (Goyal
and Moraga-Gonzalez, 2001).

Result:
There is a unique Nash equilibrium of the peer effect game y∗i ,where each individual
provides effort proportional to that of her/his direct connection and to her/his
idiosyncratic characteristics: y∗i = f (φ, d(G )).
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Modeling Peer Effects

Models of complete information: Reduced form

We re-write (1) in matrix form:

Y = φGY + X

Where Y is the level of effort solving our local average/aggregate model.

By assuming that G is invertible, it is easy to show that Y is uniquely identified:

Y − φGY = X

(I − φG )Y = X

Y = (I − φG )−1X

Hence:
Y = (I − φG )−1X = X + φGX + φ2G 2X + φ3G 3X + . . . (2)
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Modeling Peer Effects

Models of complete information: Reduced form

Y = (I − φG)−1X = X + φGX + φ2G 2X + φ3G 3X + . . .

Interpretation:

This class of model corresponds to a perfect information game (with quadratic utility
functions) in which Eq. (2) is the best-reply function of individual i choosing action
(outcome) yi , where:

individuals do not care about others when φ = 0. There are no social spillovers
among agents. Eq. (2) tells us that agents’ effort is determined exclusively by the
individual characteristics of agents (X ).

individuals want to conform when φ > 0. There are social spillovers among con-
nected agents. The effort of any agent depends on the characteristics of all other
agents, with each agent weighted using their distance in the network.

Note: this is essentially the definition of pure strategy Nash equilibrium play with complete information, where the observed
outcome of each individual i is the response to the observed outcome of individuals −i . Caveat: it is not always reasonable to
rule out mixed strategies (Camerer, 2003), e.g. non-best mutual responses, or complete information over the network topology
(Kline et al., 2019).
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Modeling Peer Effects

Three important results:

1 There is a unique Nash equilibrium in which agent i ’s effort is equal to
the vector (I −φG )−1(X ), which coincides with the vector of weighted
Bonacich centralities, with weights X : i.e. Y = (I − φG )−1X

2 There are magnifying or social multiplying effects due to network re-
lationships, as captured by the Katz-Bonacich centrality: more central
agents in the network will exert more effort.

3 From a theoretical point of view, a key novelty is the fact that agents
choose the optimal effort by taking as given their rational expectations
of the other agents’ levels of effort.
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From model to data

Consider again (1) in matrix form:

Y = φGY + Xβ

The reduced form is:
Y = (I − φG)−1(Xβ)

Interpretation:
The outcome of agent i will not only be affected by the changes in the exogenous char-
acteristics of i (direct effects), but also by the changes in the characteristics of all other
agents (indirect effects).

Average Total Impact:

M̄k
tot =

β̂k

1− φ̂

Average Direct Impact:

M̄k
dir = n−1 tr [

I β̂k

(I − φ̂G)−1
ii

]

Average Indirect Impact:

M̄k
ind = M̄k

tot − M̄k
dir
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Interpretation

Example
Suppose that:

β̂k = 0.5

φ̂k = 0.397

M̄k
tot = 0.829

M̄k
dir = 0.586

M̄k
ind = 0.243

If the model is specified in levels, we say that:

There is a positive effect of variable Xk equal to 0.5.

There is a positive feedback effect of variable Xk equal to M̄k
dir − β̂k =

0.086 arising from the impact on other agents’ outcome and getting
back to the agent herself.

There is a positive spillover effect arising from changes in the variable
Xk of other agents equal to 0.243.
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Interpretation

Example
Suppose that:

β̂k = 0.5

φ̂k = 0.397

M̄k
tot = 0.829

M̄k
dir = 0.586

M̄k
ind = 0.243

If the model is specified in logged levels, we can estimate impact estimates
as elasticities, e.g.:

A 10% increase in Xk would result in a 8.29% (M̄k
tot) increase in y , of which:

Around 70% comes from the direct effect with magnitude of 0.586.

Around 30% comes from the social spillover impact estimate (e.g.
0.243).
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From model to data
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Benchmark model

Assume that the utility of the agent i from effort profile y given the network
structure (G ) and agent attribute (X ) is:

ui (y ,G ,X ) = vi (G ,X )yi −
1

2
yi + φGyi (3)

with |φ| < 1 and vi (G ,X ) equal to:

vi (G ,X ) = A + Xβ + X̄γ + Ui =

= A + Xβ + GXγ + Ui

Assume that:

the observed effort Y corresponds to a Nash equilibrium where no agent can
increase her utility by changing her effort given the efforts of all other agents
in the network.

The econometrician observes the triple (Y ,X ,G ).

Agents do observe A and U.

V. Leone Sciabolazza (DISAE, Parthenope) Economics of Networks 2021 49 / 168



Benchmark model

The utility function (3) posits the existence of two types of peer effects:

1 The marginal utility associated with changes in the average effort of one’s
peers (Gy):

∂2ui (y ,G ,X )

∂yi∂Gy
= φ

φ is referred to as endogenous peer effects.1

The propensity of an individual to behave in some way varies with the behavior
of the reference group.

2 The marginal utility associated with an increase in yi is increasing with peer
attributes:

∂2ui (y ,G ,X )

∂yi∂GX
= γ

γ is referred to as contextual effects.
The propensity of an individual to behave in some way varies with the exoge-
nous characteristics of the reference group.

1If φ > 0, then own- and peer-effort are complements.
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Benchmark model

The utility function (3) includes also correlated effects:

Agents located in an area of the network with high values of A will choose higher
efforts:

∂2ui (y ,G ,X )

∂yi∂A
= 1

A is referred to as correlated effects:
Agents in the same group behave similarly because they face similar institutional
environments or common shocks.
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Benchmark model

Examples:

Education

1 Endogenous Effects: Classmates’ decisions directly affects her own decision (inter-
dependent decisions).

2 Contextual Effects: Distribution of background characteristics (similar parental
education, family income) lead similar behavior.

3 Correlated Effects: Similar environment/characteristics (teacher quality, similar
activities) lead similar behavior.

Crime

1 Endogenous Effects: Neighbors’ decisions directly affects own decisions (interde-
pendent decisions).

2 Contextual Effects: Distribution of background characteristics lead to similar be-
havior (similar social structure of families in the neighborhood, e.g. single-family
households).

3 Correlated Effects: Similar environment/characteristics (neighborhood quality, em-
ployment opportunities, police) lead to similar behavior, e.g. individuals in the same
neighborhood choose to commit crime because they face low punishment.
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Benchmark model

The first order condition for optimal behavior associated with (3) generates the
following best response function:

Y = Aι+ Xβ + GXγ + φGY + U (4)

Equation (4) is called the linear-in-means model (Manski, 1993): agent’s best
reply varies with

the average effort of those to whom she is directly connected (GY );

her own observed attributes (X );

the average attributes of her direct peers (GX );

the unobserved network effect (A);

the unobserved own attributes (Ui ).

The identification problem is to recover (φ, β, γ).
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Identification

The reduced form of the model can be written as:

Y = Aι+ Xβ + GXγ + φGY + U = Aι+ Xβ + X̄γ + φȲ + U (5)

Where Ȳ = GY is equal to:

Ȳ =
A

1− φ
ι+ X̄β + [

∞∑
k=0

φkG k ]GX̄ (βφ+ γ) + [
∞∑
k=0

φkG k ]Ū (6)

Demonstration

We can use (6) as a vector of ”first-stage” equations to instrument Ȳ in (5).
Note: GX̄ = G 2X (friends’ of friends’ characteristics) is the exclusion restriction
(remember time series).
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Identification

Note that (6) is identified when:

βφ + γ 6= 0. This condition is satisfied when β (contextual effects) and
γ (exogenous effects) have the same sign, endogenous effects are positive
(φ > 0) and β 6= 0.

Observe that (6) is equal to:

Ȳ =
A(I ι)

(I − φG )
+

GXβ + G 2Xγ

(I − φG )
+

Ū

(I − φG )

This equation is identified if (I ,G ,G 2) are linearly independent. Moreover, if
this is true, (I ,G ,G 2) is a valid instrument for Ȳ .
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Identification

The identifying power of intransitive triads:
(I ,G ,G2) are linearly dependent if, e.g., G2 is a linear combination of G , which is verified if the
diameter of G is minor than 3: i.e. there are no intransitive triads.

1

2 3

4

G =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 G2 = 3∗I+2G =


3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3



1

2

3

4

G =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 G2 =


1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1
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Identification

Cases:

Reflection problem (Manski, 1993): G 2 is a linear combination of G .

Identification (Bramoulle et al., 2009; Calvo-Armengol et al., 2009; De Giorgi
et al., 2010): agents have some (but not all) common friends.

Theorem (Bramoulle et al., 2009; Calvo-Armengol et al., 2009)

Suppose that |I − φG | 6= 0 and βφ+ γ 6= 0. Then:
- Without group fixed effects, the model is identified iff I , G and G 2 are linearly
independent.
- With group fixed effects, the model is identified iff I , G , G 2, and G 3 are linearly
independent.
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Identification

Manski (1993): it is important to separately identify peer or endogenous effects
from contextual or exogenous effects.

Example: The Framingham study (Connected, by Christakis and Fowler):
When a Framingham resident became obese, his or her friends were 57 % more
likely to become obese, too. A Framingham resident was roughly 20 % more likely
to become obese if the friend of a friend became obese . . . even if the connecting
friend didn’t put on a single pound.

Claim: If you’re at the center of a network, you are going to be more susceptible
to anything that spreads through it. However there are at least two possible expla-
nations:

1 Homophily : the tendency of people to gravitate toward others who are like
them: People who are gaining weight prefer to hang out with others who are also gaining

weight.

2 The shared environment, and not social contagion, might be causing the
people of Framingham to change in groups: McDonald’s opens up causing a cluster

of people living nearby to gain weight. The cluster of people appears as they are sharing a

contagious form of behavior, but it is an illusion.
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Identification

Note that desirable policy may be totally different, depending on the source
of seemingly related behavior:

If a social behavior is subject to endogenous social effects, a policy that
decreases that behavior of an individual or a group of individuals will
affect other individuals who were not directly targeted by the policy:
i.e., the effect of the policy is multiplied through social interactions.

Contextual changes do not imply the same multiplier effect responses
to an exogenous shock.

Failure to adequately control for correlated effects can lead to spuri-
ous conclusions about the importance of social influences on individual
choices.
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Identification
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Estimation

The LIM can be correctly estimated using a generalized spatial two-stage
least square (GS-2SLS) (Kelejian et al., 1998; Lee, 2007). This will yield
consistent estimates and asymptotically valid standard error estimates (see
for more details De Giorgi et al., 2010).

Why OLS are biased?
Consider pure first order spatial autoregressive model for simplicity:

Y = φGY + ε

To ease notations, let Z = GY . The OLS estimator for φ is

φ̂ = (Z
′
Z )−1Z

′
Y

Substituting the expression for Y :

φ̂ = φ(Z
′
Z )−1Z

′
ε
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Estimation

The convergence of φ̂ towards the true value φ requires both:

plim
n→∞

n−1(Z
′
Z ) = P (7)

plim
n→∞

n−1(Z
′
ε) = 0 (8)

where P is a non zero scalar.

Condition (7) can be satisfied with suitable restrictions on the value of
φ and on the structure of G (see Anselin, 1988).

Condition (8) does not hold because of the feedback effects generated
by the lagged endogenous variable (Z is not an exogenous regressor
here).

Demonstration: OLS inconsistency

Demonstration: OLS simultaneity bias
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Specification test

H0: There is no social spillover (φ = 0). The data generation process
is Y = Xβ + ε

H1: There are social spillovers (φ 6= 0). The data generation process
is Y = φGYXβ + ε

In a ML framework, standard specification tests may be used (Anselin,
1988):

Wald Test (W);

Lagrange Test (LM);

Likelihood Ratio Test (LR).

In addition, one case use the Moran’s I test (Moran, 1950):

H0: y is randomly distributed in the network.

H1: y tends to cluster in the network (e.g. high values cluster near other
high values; low values cluster near other low values). Warning: The
data generation process can be either Y = φGYXβ+ε or Y = Xβ+Gε.
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Estimation & Specification Test
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Endogenous network

In most applications, the network is endogenous: this threatens the identification.

This might happen if unobservables affect both outcomes and links:

Outcomes are determined by a linear-in-means model.

Links are determined by a dyadic model.

Some unobservable ηi enters linearly into yi and via ηi,j into gi,j .

Two different approaches:

Joint model of outcomes and links (Battaglini et al. 2021, Goldsmith-Pinkham
et al., 2013).

Two-stage correction as in Heckman (1979) (Arduini et al., 2015; Battaglini
et al., 2020; Johnnson et al., 2017; Qu et al. 2015).

V. Leone Sciabolazza (DISAE, Parthenope) Economics of Networks 2021 69 / 168



Endogenous network

Consider the linear-in-means model

Y = Aι+ Xβ + X̄γ + φȲ + U

Assume that:

Agents may assortatively match on some attribute and cluster together (ho-
mophily);

The surplus generated by connections may vary with agent attributes, gener-
ating degree heterogeneity (prefential attachment)

gi,j = δ0 +
∑
l

δl+1|x li − x lj |+ ηi,j (9)

Note: Equation (9) assumes dyadic independence2: i.e., agents’ choices are not
influenced by others decisions - each link occurs with the same probability.

2see, e.g., Lai et al., 2000; Fafchamps et al., 2007; Mayer et al., 2008; Apicella et al.,
2012; Attanasio et al., 2012, Graham B., 2017.
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Endogenous network

In addition to dyadic independence, we assume that:
U = (u1, u2, u3, . . . , un)′ and ηi = (ηi ,1, ηi ,2, . . . , ηi ,n)′ are jointly
normal with:

E (u2
i ) = σ2

u;

E (uiηi ,j) = σ2
uη, ∀i 6= j ;

E (ηi ,jηi ,k) = σ2
η, ∀j = k;

E (ηi ,jηi ,k) = 0, ∀j 6= k .

The selection effect (i.e. the correlation between unobservable charac-
teristics determining link formation and unobservable characteristics driving
the outcome, as measured by σuη) is the same for all agents.
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Endogenous network

Under this assumptions, it can be shown that the expected value of the
error term (u) on the link formation is

E (ui |ηi ,1, . . . , ηi ,n) = ψ
∑
j 6=i

ηi ,j

Where ψ =
σuη
σ2
η

.

It follows that our model can be re-written as:

Y = Aι+ Xβ + X̄γ + φȲ + ψζ + U

Where ψζi =
∑

j 6=i ηi ,j captures the selection bias.
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Endogenous network
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Inference

Consider the equation:

Y = Aι+ Xβ + X̄γ + φȲ + ψζ + U

In reduced form we have:

Y = (I − φG )−1(Aι+ Xβ + X̄γ + ψζ + U) (10)

Note that ζ is a generated regressor, hence standard errors in (10) are biased.

However, no closed form solution is available.
Use the residual bootstrap procedure in spatial econometrics (e.g., Anselin, 1990),
where resampling is performed on the structural errors U.3

3This requires errors to be i.i.d.
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Inference

Bootstrap procedure:

1 Remove autocorrelations in the residuals:

(I − φ̂G ) ∗ U = U∗

2 Resample U∗ (i.e., extraction with re-insertion) and obtain U∗res .

3 Obtain predicted values:

Ŷ = (I − φ̂G )−1(Aι+ X β̂ + X̄ γ̂ + ψ̂ζ + U∗res)

4 Estimate equation (10) using Ŷ as a new dependent variable and store point
estimates.

5 Replicate points 2 - 4 a sufficient number of times (e.g., 1,000).

6 Use the standard deviation of point estimates obtained in point 5 as standard
error in equation (10).
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Network formation models

Other popular models of network formation are:

gi,j = δ0 +
∑
l

δl+1|x li − x lj |+ δ2µi + δ3µj + ηi,j

Where µi and µj are individual fixed effects. This formulation has the benefit to
perfectly control for the degree distribution if we are working with a cross-section
dataset (Graham, 2017).

gi,j,t = δ0 +
∑
l

δl+1|x li − x lj |+ δ2 gi,j,t−1 + δ3ki,j + ηi,j

Where gi,j,t−1 controls for connections at time t − 1, and ki,j adds to the model a
”network effect flavor” (Fafchamps et al., 2007) and it measures either:

the distance between i and j when the link between them is removed.

the number of shared connections between i and j .

Other network formation models
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Inference & Network formation models

References:

Anselin, L. (1990), ”Some robust approach to testing and estimation
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Benchmark model

The linear-in-means model allow to estimate agent’s performance as a function
of individual characteristics weighted by the importance of the individual in the
network.

Y = (I − φG )−1(Xβ + ε)

Agent’s importance in the network is given by its relative position in the network
(e.g. Bonacich centrality), rather than its structural characteristics (e.g. degree
centrality).
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●
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6

All else being equal, the different performance of agent i and j is determined by
the statuses of the nodes to which they are connected.
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Heterogeneity in network spillovers (nodes)

The LIM posits the existence of homogenous network spillovers:
Network spillover benefits in the same way (φ) agents with equal Bonacich cen-
trality, but different individual characteristics.

Assumption: individual characteristics do not affect how agents ”use” their con-
nections

●

●

●

1

2

3

4

5

6
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Heterogeneity in network spillovers (nodes)

We can modify the LIM to account for differences in agent’s characteristics.

Suppose that:

agent 4 has characteristic z1 (e.g., male) and

agent 6 has characteristic z2 (e.g., female)

We can estimate the impact of

The connections of agent 4 interacted with x1: e.g., θ0 + θ1z1
∑

j g4,j

The connections of agent 6 interacted with x2: e.g., θ0 + θ1z2
∑

j g6,j

Where θ0 is a simple rescaling factor, and θ1 quantifies the effect of the
interaction between the adjacency matrix G and the characteristic z of the
agent.

Observe that the higher is θ1, the more agent i is able to use her/his characteristic to benefit from

her/his connections: θ1 is a measure of the extent to which agent i is able to influence her/his

peers, by using characteristic zi , and obtain higher values of yi .
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Heterogeneity in network spillovers (nodes)

For agent i , the model is:

yi =

(
1−

n−1∑
j=1,j 6=1

θ0gi ,j +
n−1∑

j=1,j 6=1

θ1gi ,jzi

)(
βX + ε

)

In matrix form, we get:

Y = (I −ΘΛG )−1(Xβ + ε)

Where:

Λ is a diagonal matrix of ones.

Θ = θ0 + θ1z measures the extent to which the peers of an agent with
a given characteristic are susceptible to her/his influence.
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Heterogeneity in network spillovers (nodes)

The same exercise can be performed to account for differences in the characteristics
of agents’ connections:

yi =

(
1−

n−1∑
j=1,j 6=1

η0gi,j +
n−1∑

j=1,j 6=1

η1gi,jzj

)(
βX + ε

)

Y = (I − EGΛ)−1(Xβ + ε)

Where:

Λ is a diagonal matrix of ones.

E = η0 + η1z measures the extent to which an agent is more susceptible to
the influence of her/his own peers with a given characteristic: e.g., all else
being equal, the extent to which being connected to males/females matters
in your performance.
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Heterogeneity in network spillovers (links)

We can also consider the possibility of heterogeneous links, rather than nodes.

Specifically, we consider the case where agents belong to two different groups and
interactions are different between and within groups.
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Heterogeneity in network spillovers (links)

In order to estimate this effect, we need to rearrange the adjacency matrix, so that:

The block on the upper-left side registers the connections within group 1;

The block on the lower-right side registers the connections within group 2;

The block on the upper-right side registers the connections between group 1
and group 2;

The block on the lower-left side registers the connections between group 2
and group 1;

●

●

●
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5

6


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 1
0 0 1 0 1 0
0 0 1 1 0 1
0 0 1 0 1 0


‘
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Heterogeneity in network spillovers (links)

Now define:

Gwithin the matrix registering connections on the diagonal of G (e.g. blocks
on the upper-left and lower right side).

Gbetween the matrix registering the connections out the diagonal of G (e.g.
blocks on the upper-right and lower left side).

Gwithin =


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

 Gbetween =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0


‘

Note that that G = Gwithin + Gbetween
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Heterogeneity in network spillovers (links)

We can estimate:

Y = (I − φ1Gwithin − φ2Gbetween)−1(Xβ + ε)

Where:

φ1 captures within groups spillovers, and

φ2 captures between groups spillovers.
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Heterogeneity in network spillovers

Wrapping up:

We measure the extent to which the peers of an agent with a given characteristic
are susceptible to her/his influence, with:

Y = (I −ΘΛG )−1(Xβ + ε) (11)

We measures the extent to which an agent with a given characteristic is more
susceptible to her/his peers influence, with:

Y = (I − EGΛ)−1(Xβ + ε) (12)

We measure the effect of belonging to two different groups, when interactions are
different between and within groups, with:

Y = (I − φ1Gwithin − φ2Gbetween)−1(Xβ + ε) (13)
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Estimation

We can estimate the modified LIM model, by using:

Non-Linear Least Squares (NLLS): the basis of the method is to ap-
proximate the model by a linear one and to refine the parameters by
successive iterations.

Maximum Likelihood Estimation (MLE).

CAVEAT: in the latter case, we need to write a MLE function. This is easier
than one would think.

V. Leone Sciabolazza (DISAE, Parthenope) Economics of Networks 2021 95 / 168



Estimation

Consider the traditional ML function of the LIM:

n

2
ln (2π)− 1

2
ln |Ω| − 1

2

[
y − (I − φG )−1Xβ

]′
Ω−1

[
y − (I − φG )−1Xβ

]
Where n is the total sample size and Ω = σ2(I − φG )−1(I − φG ′)−1.

In order to estimate the effect of:

Agent i ’s characteristics in leveraging his/her connections, we substi-
tute φG with ΘΛG ;

the characteristics of Agent i ’s connections in leveraging the connection
with i , we substitute φG with EGΛ;

the impact of different types of connections, we substitute φG with
φ1Gwithin − φ2Gbetween;
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Estimation
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econet: overview

The R package econet provides methods for estimating parameter-dependent
network centrality measures with linear-in-means models.

Both nonlinear least squares and maximum likelihood estimators are imple-
mented.

The methods allow for both link and node heterogeneity in network effects,
endogenous network formation and the presence of unconnected nodes.

The routines also compare the explanatory power of parameter-dependent
network centrality measures with those of standard measures of network
centrality.
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econet: overview

econet allows to implement the reduced form of two model behavior.

Model A: Battaglini et al. (2018)

y = α · (I − φG )−1 + X>r β + ε (14)

Model B: Battaglini et al. (2020)

y = (I − φG )−1
(
α + X>r β

)
+ ε (15)
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econet: net dep()

The main function of the econet package is net dep().

Field specification in net dep()
Model Hypothesis Equation Centrality measure b (g , φ)

Model A
lim 14 φ: homogeneous b (g , φ) = (I − φG )−1 1
het 16 φ: heterogeneous by node type4 b (g , φ) = [I − G (φI + γΛ)]−11

Model B

lim 15 φ: homogeneous b (g , φ) = (I − φG )−1 1
het l 11 φ: heterogenous outgoing influence

by node type
b (g , φ) = (I − θΛG )−11

het r 12 φ: heterogenous ingoing influence by
node type

b (g , φ) = (I − ηGΛ)−11

par 13 φ: heterogenous by link type b (g , φ) = (I − φ1Gwitφ2Gbtw )−11

Addional fields are detailed in the R help: i.e., ?net dep().

4The extension of model A to the heterogenous case is:

y = α · [I − G(φI + γΛ)]−1 + X>r β + ε (16)
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econet: net dep()

Example: Model A.

R> library("econet")

R> data("a_db_alumni")

R> data("G_alumni_111")

R> db_model_A <- subset(a_db_alumni , time == 3)

R> G_model_A <- a_G_alumni_111

R> are_factors <- c("party", "gender", "nchair", "isolate")

R> db_model_A[are_factors] <- lapply(db_model_A[are_factors],

+ factor)

R> db_model_A$PAC <- db_model_A$PAC/1e+06

R> f_model_A <- formula("PAC ∼ gender + party + nchair + isolate")

R> starting <- c(alpha = 0.47325, beta_gender1 = -0.26991,

+ beta_party1 = 0.55883, beta_nchair1 = -0.17409,

+ beta_isolate1 = 0.18813, phi = 0.21440)

R> lim_model_A <- net_dep(formula = f_model_A, data = db_model_A,

+ G = G_model_A, model = "model_A", estimation = "NLLS",

+ hypothesis = "lim", start.val = starting)

R> summary(lim_model_A)

R> lim_model_A$centrality
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econet: net dep()

Example: Model B, endogeneity.

R> data("db_cosponsor")

R> data("G_alumni_111")

R> db_model_B <- subset(db_cosponsor , time == 3)

R> G_model_B <- G_cosponsor_111

R> G_exclusion_restriction <- G_alumni_111

R> are_factors <- c("gender", "party", "nchair")

R> db_model_B[are_factors] <- lapply(db_model_B[are_factors] ,

+ factor)

R> f_model_B <- formula("les ∼ gender + party + nchair")

R> starting <- c(alpha = 0.23952, beta_gender1 = -0.22024,

+ beta_party1 = 0.42947, beta_nchair1 = 3.09615,

+ phi = 0.40038, unobservables = 0.07714)

R> lim_model_B <- net_dep(formula = f_model_B, data = db_model_B,

+ G = G_model_B, model = "model_B", estimation = "NLLS",

+ hypothesis = "lim", endogeneity = TRUE , correction = "heckman",

+ first_step = "standard",

+ exclusion_restriction = G_exclusion_restriction ,

+ start.val = starting)

R> summary(lim_model_B)

R> summary(lim_model_B, print = "first.step")
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econet: net dep()

Example: Model A, heterogeneity by node type.

R> z <- as.numeric(as.character(db_model_A[, "gender"]))

R> f_het_model_A <- formula("PAC ∼ party + nchair + isolate")

R> starting <- c(alpha = 0.44835, beta_party1 = 0.56004,

+ beta_nchair1 = -0.16349, beta_isolate1 = 0.21011,

+ beta_z = -0.26015, phi = 0.34212, gamma = -0.49960)

R> het_model_A <- net_dep(formula = f_het_model_A, data = db_model_A,

+ G = G_model_A, model = "model_A", estimation = "NLLS",

+ hypothesis = "het", z = z, start.val = starting)

R > summary(het_model_A)

Example: Model B, heterogeneity by link type.

R> z <- as.numeric(as.character(db_model_B[, "party"]))

R> starting <- c(alpha = 0.242486, beta_gender1 = -0.229895,

+ beta_party1 = 0.42848, beta_nchair1 = 3.0959,

+ phi_within = 0.396371, phi_between = 0.414135)

R> party_model_B <- net_dep(formula = f_model_B,

+ data = db_model_B,

+ G = G_model_B, model = "model_B", estimation = "NLLS",

+ hypothesis = "par", z = z, start.val = starting)

R> summary(party_model_B)
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econet: additional functions

quantify(): it allows to estimate direct and indirect peer effects when ”model = model b”.5

R> quantify(fit = lim_estimate_model_B, Gn = G_model_B)

boot(): it provides robust standard errors when ”endogeneity = TRUE”

R> boot_lim_estimate <- boot(object = lim_model_B,

+ hypothesis = "lim", group = NULL , niter = 2, weights = FALSE)

R> boot_lim_estimate

horse race(): it runs a horse race across different centrality measures.

R> horse_model_B <- horse_race(formula = f_model_B,

+ centralities = "betweenness", directed = TRUE , weighted = TRUE ,

+ normalization = NULL , data = db_model_B, G = G_model_B,

+ model = "model_B", estimation = "NLLS")

R> summary(horse_model_B)

R> summary(horse_model_B, centrality = "betweenness")

5Note that the estimated effect of network centrality when ”model = model a” is
captured by the parameter α.
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econet: overview
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Network structure

Each network can be classified in terms of:

Structure: the link generation process connecting the considered population (i.e. the
realization of a probability distribution).

Composition: the distribution of a set of attributes in the considered population.

The structure of a network can be characterized:

at the local level: by looking at the centrality of each agent.

at the global level: by looking at the network as a whole, studying e.g. the degree distri-
bution, the clustering coefficient, the average path length.

The composition of a network can be studied as a function of:

composition: e.g. the propensity for individuals of the same sex to form partnerships
(homophily).

topology: e.g., the propensity for individuals to form triangles of partnerships (transitivity).

structure of a different network, when agents have multiple affiliations.
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Network structure

Case study: The managers of a high-tech company.
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Reference:
Krackhardt, D. (1987), ”Cognitive social structures,” Social networks 9(2): pp. 109 - 134.
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Network structure: descriptive analysis

Network composition and local measures of connectivity
Vice-presidents are gatekeepers, the president is a diffuser leader.
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Tyschuk et al. (2015):

gatekeeper: high betweenness, and low eigenvector. Control of information flow.

diffuser leader: low betweenness, and high eigenvector. Unique access to gatekeepers.
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Network structure: descriptive analysis

Global measures of connectivity: degree centrality
A common hypothesis is preferential attachment (power law distribution):
Mechanism of cumulative advantage where the probability of being attached to another node is
proportional to the degree of that node (Barabasi et al., 1999).
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Network structure: descriptive analysis

Global measures of connectivity: Average Path Length (APL) and Clustering Co-
efficient (CC).

Another common hypothesis is that the network is a random graph:
i.e. it is generated by a Bernoulli distribution (Erdős and Rényi 1959, 1960, 1961).
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Network structure: inferential analysis

The researcher has limited information to model the joint distribution of
agents’ linking decision: i.e. the decisions to connect.

First approach: dyadic dependence
Suppose the researcher knows that every two nodes are linked with proba-
bility p, where p is the parameter to be estimated. Two extreme cases are
possible:

any two pairs of nodes are independent of each other.

all pairs are perfectly correlated.
We need to make assumptions on the extent to which an event, e.g. i is linked to j but k is not
linked to i , influences the likelihood of some other nodes u and v being linked.

Second approach: agent heterogeneity [ Previous lection ]
Agents may assortatively match on some attribute and cluster together
(homophily). Moreover, the surplus generated by connections may vary with
agent attributes, generating degree heterogeneity (prefential attachment).
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Hypothesis testing

Hypothesis: any two pairs of nodes are independent of each other.

Model: the network is a Simple Random Graph (SRG).
The network is one of the many realizations of a distribution of networks
consisting of: i) n nodes, ii) with each tie in the network occurring with the
same specified probability (θ) (Bernoulli distribution).

Case study: asking advice to one colleague is independent of all other coun-
seling relationships created in the network, including the ones that the two
colleagues maintain with other network members.
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Hypothesis testing

Let the set of all possible socio-matrices be:

Υ = {Y : yi ,j ∈ {0, 1}, yi ,i = 0}

Note: Υ is the distribution from which our network is drawn.

Assumption:

The entries of Y (i.e. the connections between i and j) are independent
and identically distributed: i.e. any two pairs of nodes are independent of
each other: y1,2, ..., yn−1,n ∼ i .i .d binary (θ).

Implication:

Y = [y1,2, ..., yn−1,n] is generated by a Bernoulli distribution.
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Hypothesis testing

A SRG probability model (P) over Υ assigns a number P(Y ) to each Y ∈ Υ:

0 ≤ P(Y ) ≤ 1 ∀Y ∈ Υ ;
∑
Y∈Υ

P(Y ) = 1; Y ∈ Υ ∼ i .i .d .

The probability of a graph Y ∈ Υ is given by a binomial distribution (i.e.,
the sum of i.i.d. Bernoulli realizations):

Pθ(Y ) =
∏
i 6=j

θyi,j (1− θ)1−yi,j = θ
∑

yi,j (1− θ)
∑

(1−yi,j )

Put differently, the probability of a graph Y ∈ Υ is given by:

The probability of observing a certain number of links (
∑

yi ,j) in Y :
θ; and

The probability of not observing a certain number of links (1−
∑

yi ,j)
in Y : 1− θ.
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Intuition

Depending on the value of θ, the SRG model will produce a distribution of
networks Υ, and we can test what is the probability that Y is a realization
of Υ.

To this purpose, we define all the network distributions Υ generated by the
SRG model as:

P = {p(Y |θ) : θ ∈ Θ}

where:

θ is an unknown parameter;

Θ is the space parameter of θ (i.e. [0, 1]);

p(Y |θ) = binomial(θ) is one of the many networks generated by Υ:
i.e. an i.i.d. realization of the binary model
Pθ(Y ) = θ

∑
yi,j (1− θ)

∑
(1−yi,j ).

Define the observed network (e.g. the advice network) as Y.
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Intuition

How can we test the hypothesis that Y is generated by a SRG model: i.e.
Y is the realization of a distribution Υ?

Step 1:

Comparing the observed data (Y) with every SRG distribution in P
[This is computationally unfeasible]

Finding a value of θ such that Pθ(Y ) generates a network similar to Y
(ML approach)

Step 2:

Test the extent to which observed data resembles the networks gener-
ated by the chosen SRG distribution: test of goodness of fit (GOF).
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Intuition

Step 1

Define the probability of occurrence of one link in Y as mȳ , where m is the
number of pairs and ȳ is density of Y, respectively.

p(Y |θ) = θ
∑

yi,j (1− θ)
∑

(1−yi,j ) = θmȳ (1− θ)m(1−ȳ)

In logs, we have:

log p(Y |θ) = mȳ log θ+m(1− ȳ) log (1−θ) = m[ȳ log θ+ (1− ȳ) log (1−θ)]

Using a maximum likelihood approach, we now need to estimate the param-
eter θ such that the probability to observe log p(Y |θ) under this relation is
maximized. Recalling that the maximum occurs where the derivative (slope)
is zero, we have:

d

dθ
log p(Y |θ) = m[

ȳ

θ
− 1− ȳ

1− θ
] = 0

This condition occurs if:
ȳ

1− ȳ
=

θ

1− θ
(17)
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Intuition

Equation 17 is verified when θ = ȳ .

Hence, by the maximum likelihood criterion, the distribution of networks Υ
with realizations

P = p(Y |θ) = binomial(θ) : θ ∈ [0, 1]

that is closest to Y is the distribution:

p(Y |θ) = binomial(ȳ)

Among all the possible distributions (graphs) generated by the SRG model
(Y ∈ Υ), we choose the one generating links with probability ȳ .

Intuition: ȳ is the rate of occurence of links in Y
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Intuition

Step 2 (GOF)

Monte Carlo methods are used to implement a t-test comparing the graphs
generated by p(Y |θ) = binomial(ȳ) with Y.
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H0: The advice network (Y) is an SRG.

V. Leone Sciabolazza (DISAE, Parthenope) Economics of Networks 2021 125 / 168



Outline

1 Centrality Measures

2 Modeling Peer Effects

3 Identification

4 Modeling Peer Effects: extensions

5 econet

6 Network Formation Models
Network structure
Network structure: descriptive analysis
Network structure: inferential analysis
Hypothesis testing
RCE Model
Dyadic-dependence assumption: p1 model
Dyadic-dependence assumption: ERGMs

7 Appendix

V. Leone Sciabolazza (DISAE, Parthenope) Economics of Networks 2021 126 / 168



RCE model

The Row-Column Effect (RCE) model

It is a class of tie-focused logit models (which is also called two-way ANOVA).

Pr(Yi ,j = 1|µ, αi , βj) =
eµ+αi+βj

1 + eµ+αi+βj

Where α measures agent sociability, and β measures agent attractiveness.
Odds ratios for tie preferences
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RCE model

Hypothesis testing:
How does the ”best” RCE model compare to the data?

Step 1

The RCE model Pr(Y |µ, α, β) that maximizes the fit with Y is

θ̂ = µ̂+ α̂ + β̂

Where µ̂, α̂, β̂ are the values estimated by the logistic regression.

Note:

Logistic regression estimates will be unbiased only if the assumption dyadic
independence holds: i.e.,
Any two pairs of nodes are independent of each other (a test is provided by
Pan et al. 2015).
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RCE model

Step 2 (GOF)
Metrics: Density, In-degree, Out-degree.
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RCE model

Step 2 (GOF)
Metrics: Mutuality.
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RCE model

Why RCE doesn’t recover mutuality effects?
Mutuality is not a parameter of our model.

Let’s rearrange our equation.

Pr(Y |µ, α, β) =
∏
i 6=j

e(µ+αi+βj )yi,j

1 + e(µ+αi+βj )yi,j
= exp(µy..+

∑
i

αiyi,.+
∑
j

βjy.,j) = exp[t(y)·θ]g(θ)

where:

y.. represents all dyads,

yi ,. represents out degrees (sociability);

y.,j represents in degrees (attractivity);

t(y) = (y.,., yi ,., y.,j) is a vector of statistics;

θ = (µ, α1,., . . . , αn,., β.,1, . . . , β.,n) is a vector of parameters.

Important result: The RCE model is nested in the exponential family:
Hammersley and Clifford theorem
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Dyadic-dependence assumption: p1 model

So far, we have assumed that any two pairs of nodes are independent of
each other.

Now, we hypothesize that there is a higher probability for j to be connected
with i if i is connected to j (mutuality):

Pr(Yi ,j = yi ,j
⋂

Yj ,i = yi ,j) = Pr(Yi ,j = yi ,j |Yj ,i = yi ,j)Pr(Yj ,i = yi ,j)

This can be tested using a p1 model (Holland et al., 1981).

A p1 model can be thought as a RCE model that includes a term for mu-
tuality, even though the two models are non nested.

Note: also p1 is nested in the exponential family model.
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Dyadic-dependence assumption: p1 model

The P1 model

p(yi ,j , yj ,i |µ, αi , βj , γ) =
eµi,jyi,j+µj,iyj,i+γyi,jyj,i

1 + eµi,j + eµj,i + eµi,j+µj,i+γ

Where µi ,j = µ+ αi + βj .

Sufficient statistics for p1 are:

the total number of edges (µ);

outdegrees (yj ,i ) and indegrees (yi ,j);

total mutual dyads (yi ,jyj ,i ).

Computational issues:

logistic regression estimates are not reliable anymore: observations are
not i.i.d.
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Dyadic-dependence assumption: p1 model

The details for estimating a p1 model are in Robins et al. (2007).

Intuition
The P1 estimation method is similar to the ad hoc approach: i.e.,

The observed graph is compared against a distribution of random
graphs generated by a stochastic process parameterized according to
pre-defined parameter values.

These values are chosen in each iteration of the estimation algorithm
according to a maximum likelihood criterion, so to ensure that the
generated networks are each time closer to the observed data.

The quality of the estimates are once again evaluated by t-statistics.

A MCMC algorithm repeatedly performs these steps until t-statistics are
close to 0.
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Dyadic-dependence assumption: p1 model

Step 2 (GOF)
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Dyadic-dependence assumption: ERGMs

We can make hypotheses beyond the dyadic-level.

Markov Dependence Assumption (Frank and Strauss, 1986)

nodes are seen as tie variables.

each tie-variables is assumed to be independent conditional on the rest
of the graph.

Example:
if node i connects the possible edges (i ; j) and (i ; k), we say that the tie-
variables corresponding to (i ; j) and (i ; k) are independent conditional on
the rest of the graph: i.e.

if agent 1 refers to agent 2 may depend on whether agent 1 refers to 3.

the probability of agent 2 to refer to agent 3, may depend on whether 2 and
3 both refer to agent 1.
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Dyadic-dependence assumption: ERGMs

Realization-Dependent Assumption (Baddeley et al. 1989, Pattison et al. 2002)
It generalizes the notion of conditional independence: i.e.
Two variables are statistically independent given the state of a third variable, even
when do not share a node.
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Dyadic-dependence assumption: ERGMs

Exponential Random Graph Models (ERGMs) can be used to model these
assumptions.

Each network tie is regarded as a random variable: i.e., the model is not
going to make perfect deterministic predictions.

A dependence hypothesis has to be proposed to define contingencies among
the network variables (e.g. mutuality, transitivity, etc.).

The dependence hypothesis implies a particular form to the model, which is
described by different count statistics (e.g. number of mutual dyads, trian-
gles, k-stars).
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Dyadic-dependence assumption: ERGMs

The general form for an ERGM can be written as:

P(Y = y) =
exp(θ′g(y))

k(θ)

where:

Y is the random variable for the state of the network (with realization
y);

g(y) is a vector of model statistics for network y ;

θ is the vector of coefficients for those statistics; and

k(θ) represents the quantity in the numerator summed over all possible
networks (typically constrained to be all networks with the same node
set as y).
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Dyadic-dependence assumption: ERGMs

ERGMs relies on the Hammersley & Clifford theorem:
Every network can be expressed in the exponential family using count of
graph statistics:

Note:
Parameters are simplified through homogeneity or other constraints: e.g.,
we assume the same mutual effect across the entire network.
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Dyadic-dependence assumption: ERGMs

The general form for an ERGM can be re-expressed in terms of the condi-
tional log-odds of a single tie between two actors:

logit (Yij = 1|y cij ) = θ′δ(yij)

Where:

Yij is the random variable for the state of the actor pair i , j (with
realization yij);

y cij signifies the complement of yij , i.e. all dyads in the network other
than yij ;

The vector δ(yij) contains the change statistic for each model term.
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Dyadic-dependence assumption: ERGMs

The change statistic records how g(y) term changes if the yij tie is toggled
on or off. So:

δ(yij) = g(y+
ij )− g(y−ij )

Where

y+
ij is defined as y cij along with yij set to 1; and

y−ij is defined as y cij along with yij set to 0.

That is,

δ(yij) equals the value of g(y) when yij = 1 minus the value of g(y)
when yij = 0;

but all other dyads are as in g(y).
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Dyadic-dependence assumption: ERGMs

The model terms g(y) in an ERGM are network statistics, functions of net-
work configurations that we hypothesize may be more or less common than
what would be expected in a simple random graph (where all ties have the
same probability).

The coefficient θ can be interpreted as the log-odds of an individual tie
conditional on all others.6

Note 1:
Unlike traditional covariates in a linear model, network statistics are not ex-
ogenous measures, they are functions of the network itself, typically sums of
dyad states or products of dyad states that represent specific configurations.

Note 2:
Also in this case, a test of GOF is required.

6Probabilities are obtained from log odds computing exp(θ)/(1 + exp(θ)).
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Dyadic-dependence assumption: ERGMs

Goodness of fit:
ERGMs can be seen as generative models where

local processes govern the formation of micro-configurations (e.g. a
triangle);

Locally generated processes aggregate up to produce characteristic
global network properties, even though these global properties are not
explicit terms in the model.

GOF tests how well local processes reproduce the observed global network
properties that are not in the model (Hunter et al., 2008).

Standard global network properties checked by GOF are:

Degree distribution;

Minimum geodesic distance;

Edgewise shared partner distributions (Hunter et al., 2008);

Triad census distribution.
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Network Formation Models
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2SLS - Demonstration (1/2)

Define:

G a row-normalized matrix n ∗ n;

ι a vector of ones 1 ∗ n;

φ a scalar ∈ (−1, 1).

Rememeber that:

(I − φG)−1 =
∑∞

k=0 φ
kG k .

G ι = ι, and G k ι = ι.

A(I − φG)−1ι = A[
∑∞

k=0 φ
kG k ]ι =

A(1 + φ+ φ2 + φ3 + . . . ) = A
1−φ ι

Re-arrange the structural equation:

Y = Aι+ Xβ + GXγ + φGY + U =

= A(I − φG)−1ι+ (I − φG)−1(Xβ + GXγ) + (I − βG)−1U =

=
A

1− φ
ι+

∞∑
k=0

φkG kXβ + GXγ + [
∞∑
k=0

φkG k ]U =

=
A

1− φ
ι+

∞∑
k=0

φkG kXβ +
∞∑
k=0

φkG k+1Xγ + [
∞∑
k=0

φkG k ]U =

=
A

1− φ
ι+ Xβ +

∞∑
k=1

φkG kXβ +
∞∑
k=0

φkG k+1Xγ + [
∞∑
k=0

φkG k ]U =

=
A

1− φ
ι+ Xβ +

∞∑
k=0

φkG k+1Xβφ+
∞∑
k=0

φkG k+1Xγ + [
∞∑
k=0

φkG k ]U =

=
A

1− φ
ι+ Xβ +

∞∑
k=0

φkG k+1X (βφ+ γ) + [
∞∑
k=0

φkG k ]U
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2SLS - Demonstration (2/2)

Define:

GX = X̄ and G2X = GX̄ .

Observe that:∑∞
k=0 G

k+1X = X̄ +
∑∞

k=1 G
k X̄

Then:

Y =
A

1− φ
ι+ Xβ + [

∞∑
k=0

φkG k+1X ](βφ+ γ) + [
∞∑
k=0

φkG k ]U

Multiplying by G:

Ȳ =
A

1− φ
ι+ X̄β + [

∞∑
k=0

φkG k+1X̄ ](βφ+ γ) + [
∞∑
k=0

φkG k ]Ū =

=
A

1− φ
ι+ X̄β + [

∞∑
k=0

φkG k ]GX̄ (βφ+ γ) + [
∞∑
k=0

φkG k ]Ū

Back to slides
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Inconsistency of the OLS estimator

Let us show that condition (8) does not hold.

Consider the reduced form:

Y = (I − φG )−1ε

Z = GY = G (I − φG )−1ε

Condition (8) can be written as:

plim
n→∞

n−1(Z
′
ε) = plim

n→∞
n−1ε

′
G (I − φG )−1ε 6= 0

The presence of the spatial matrix G results in a quadratic form in the error term
ε. Therefore, except in the trivial case in which φ = 0, the plim expression will not
equal to zero.

Back to slides
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OLS simultaneity bias (1/2)

Because of the correlation in the error term (E(εi , εj ) 6= 0, var(εi , εj ) 6= 0), the OLS will suffer
from the simultaneity bias: i’s outcome (y) is a linear function of j-s’ error term (ε).

Let us calculate the simultaneity bias in a simple case.
Consider three individuals, we can represents the matrix form as a system of simultaneous equa-
tions as follows: 

y1 = φ1
y2+y3

2
+ ε1

y2 = φ2
y1+y3

2
+ ε2

y3 = ε3

Now, substitute the first and third equation into the second one:

y2 = φ2
φ1

y2+y3
2

+ ε1 + y3

2
+ ε2

y2 = φ2
φ1

y2+ε3
2

+ ε1 + ε3

2
+ ε2

This yields to the reduced form:

y2(1− φ1φ2) = φ2
φ1

ε3
2

+ ε1 + ε3

2
+ ε2

y2 =
φ2

φ1
ε3
2

+ε1+ε3

2
+ ε2

(1− φ2φ1)
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OLS simultaneity bias (2/2)

If we add y3 and divide all by 2, we have:

y2 + y3

2
= y3 + 2

φ2φ1
ε3

2 + ε1 + ε2 + ε3

(1− φ1φ2)
+ ε2

= ε3 + 2
φ2φ1

ε3

2 + ε1 + ε2 + ε3

(1− φ1φ2)
+ ε2

Now, note that E ( y2+y3

2 , ε1) is equal to:

E
(
ε3 + 2

φ2φ1
ε3

2 + ε1 + ε2 + ε3

(1− φ1φ2)
+ ε2, ε1

)
=

1

(1− φ1φ2)
σ2
ε

Since E (εi , εj) 6= 0.7

Back to slides

7Remember that σ2
ε = Var(ε) > 0
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RCE model: Odds ratios for tie preferences

We use a frequentist approach to infer whether agents’ characteristics de-
termined the characteristics of whom they choose as friends.

Pr(xj = 1|yi ,j = 1, xi = 1) =
Pr(yi ,j = 1|xj = 1, xi = 1)Pr(xj = 1|xi = 1)

Pr(yi ,j = 1|xi = 1)

=
Pr(yi ,j = 1|xj = 1, xi = 1)Pr(xj = 1)

Pr(yi ,j = 1|xi = 1)

= p11
Pr(xj = 1)

Pr(yi ,j = 1|xi = 1)

Where p1,1 can be interpreted as, e.g., ”what is the probability that two
nodes of level 3 (managers) are friends?”.
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RCE model: Odds ratios for tie preferences

In terms of odds, we have:
odds(xj = 1|yi ,j = 1, xi = 1, yi ,j = 1, xi = 1) =

Pr(xj = 1|yi ,j = 1, xi = 1)Pr(xj = 0|yi ,j = 1, xi = 0)

Pr(xj = 0|yi ,j = 1, xi = 1)Pr(xj = 1|yi ,j = 1, xi = 0)

Now recalling that:

Pr(xj = 1|yi ,j = 1, xi = 1) = p11[Pr(xj = 1)/Pr(yi ,j = 1|xi = 1)]

Pr(xj = 0|yi ,j = 1, xi = 1) = p10[Pr(xj = 0)/Pr(yi ,j = 1|xi = 1)]

We have that:
odds(xj = 1|{yi ,j = 1, xi = 1}, {yi ,j = 1, xi = 1}) =

p11

p10

Pr(xj = 1)

Pr(xj = 0)

Where p11
p10

is an absolute ratio revealing tie preferences.
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RCE model: Odds ratios for tie preferences

Odd ratios can be used to obtain network characteristics:

Attractiveness (indegree) of agents with attribute x = 1:

p01
p00

=
odds(xj=1|yi,j=1,xi=0)

odds(xj=1)

Sociability (outdegree) of agents with attribute x = 1:

p10
p00

=
odds(xj=0|yi,j=1,xi=1)

odds(xj=1)

Preference for homophily:

p11p00
p10p01

= Odds ratio(xj = 1|{yi ,j = 1, xi = 1}, {yi ,j = 1, xi = 0}) = γ

This ratio represents the relative preference of node j with x = 1 versus
x = 0 to tie to nodes with x = 1.
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RCE model: Odds ratios for tie preferences

Now consider a logistic regression model, where the probability for i and j to be
connected is a function of their characteristics:

Pr(y = 1|x1, x2) =
eβ0+β1x1+β2x2+β12x1x2

1 + eβ0+β1x1+β2x2+β12x1x2

In terms of odds, we get:

odds(y = 1|x1, x2) = exp(β0 + β1x1 + β2x2 + β12x1x2)

This model summarizes the statistics previously mentioned, since e.g.:

odds(y = 1|0, 0) = exp(β0);

odds(y = 1|1, 0) = exp(β0 + β1).

Then:

odds ratio(y = 1|(1, 0), (0, 0)) = exp(β0+β1)
exp(β0) = exp(β1): i.e. p10

p00
(sociability);
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RCE model: Odds ratios for tie preferences

In log odds:

log odds(y = 1|x1, x2) = β0 + β1x1 + β2x2 + β12x1x2

Given that exp(β1) = ratio(y = 1|(1, 0), (0, 0)), in logistic regression:

β1 is the ”effect” of x1, it represents the log odds ratio

(y = 1|(1, 0), (0, 0)) (sociability)

β2 is the ”effect” of x2, it represents the log odds ratio

(y = 1|(0, 1), (0, 0)) (attractiveness)

β12 is the ”effect” of x2, it represents the log odds ratio

(y=1|(1,1),(0,1))
(y=1|(1,0),(0,0)) (homophily)

A tie-focused approach that exploit this feature of logit models is the RCE
model (which is also called two-way ANOVA), where x1 and x2 are coded as
fixed effects (the reference category is excluded), and they are constrained
so that

∑
x1 =

∑
x2 = 0. Back to slides
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Hammersley and Clifford theorem

Every network can be expressed in the exponential family using count of
graph statistics.

We have already seen using our ad hoc approach for random graphs, the
probability of occurrence of G can be expressed as:

P(G ) = pL(g)(1− p)
n(n−1)
2−L(G)

=
( p

1− p

)L(G)(
1− p

) n(n−1)
2

= exp
[
log
( p

1− p

)
L(G )− log

( 1

1− p

)n(n − 1)

2

]
Note that:(

1
1−p

)
n(n−1)

2 is a constant not involving the number of links;

L(G ) is exactly the number of links of G , that is the summary statistics
of the graph.
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Hammersley and Clifford theorem

The probability of G can be expressed as a function of its summary statistics.

Assume that:

L(G ) = s1(G );(
1

1−p

)
n(n−1)

2 = c ; and

log p
1−p = β1

Then, we can rewrite the function in this way:

P(G ) = exp
[
β1s1(G )− c

]
As a result, we have expressed our model in terms of an exponential distri-
bution.

Back to slides
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Triad census

Back to slides

V. Leone Sciabolazza (DISAE, Parthenope) Economics of Networks 2021 168 / 168


	Centrality Measures
	Modeling Peer Effects
	Modeling Peer Effects
	From model to data

	Identification
	Benchmark model
	Identification
	Estimation
	Specification test
	Endogenous network
	Inference
	Network formation models

	Modeling Peer Effects: extensions
	Benchmark model
	Extension: heterogeneity in network spillovers (nodes)
	Extension: Heterogeneity in network spillovers (links)
	Estimation

	econet
	Network Formation Models
	Network structure
	Network structure: descriptive analysis
	Network structure: inferential analysis
	Hypothesis testing
	RCE Model
	Dyadic-dependence assumption: p1 model
	Dyadic-dependence assumption: ERGMs

	Appendix
	2SLS - Demonstration
	Inconsistency of the OLS estimator
	OLS simultaneity bias
	RCE model: Odds ratios for tie preferences
	Hammersley and Clifford theorem
	Triad census


